Addendum
No. SIX Date: 5.21.19

Project:

A PE FACILITY FOR
CLANTON MIDDLE SCHOOL FOR THE
CHILTON COUNTY BOARD OF EDUCATION
CLANTON, ALABAMA

MCKEE PROJECT NO. 19-119
ALABAMA BUILDING COMMISSION NO. 2019091

The following changes and/or substitutions to the plans and specifications are hereby made a part of same and are incorporated in full force as part of the contract.

Bidders shall acknowledge receipt of this Addendum in writing on his Proposal Form.

A6.1 GENERAL MODIFICATIONS:

A. Refer to the Advertisement for Bids, Change as follows:

Combo Bid: Combination bid of Proposals A & C.

A6.2 SPECIFICATION MODIFICATIONS:

A. Revised Specifications 16100 Electrical (revised 5.21.19)

A6.3 DRAWING MODIFICATIONS:

A. E0.1 (dated 5.21.19)

END OF ADDENDUM SIX
PART 1 - GENERAL

1.01. RELATED DOCUMENTS:
 A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections apply to work specified in this section.

1.02. QUALIFICATIONS OF ELECTRICAL CONTRACTORS:
 A. Electrical contractor must be properly established as an electrical contractor by the State of Alabama. Electrical contractor shall have had previous experience in the satisfactory installation of at least three systems of this type and size in the State of Alabama.

1.03. CODES, PERMITS AND INSPECTIONS:
 A. Comply with applicable laws of the community, with latest edition of National Electrical Code (NEC), NFC 70, and the International Building Code (IBCC) or the edition adopted by the local authority having jurisdiction, where not in conflict with those laws, and with the service rules of the local utility company.
 B. Obtain and pay for all permits and deposits, and arrange for inspections as required.
 C. After completion of the work, submit certificate of final inspection and approval from the local electrical inspector, certifying that the installation complies with all regulations governing same.

1.04. MATERIALS:
 A. All materials shall be new, and UL approved where a standard has been established.
 B. Manufacturers’ names and model numbers shown on the plans and in the specifications are given to indicate the type and general quality of items to be provided. Equal products by other manufacturers will be accepted.
 C. Material substitutions will be considered only when evidence of equality and suitability, satisfactory to the Architect/Engineer has been presented in writing, with samples if requested by the Architect/Engineer. All prior approvals must have the approval of the engineer of record at the offices of Gunn and Associates, P.C. located at 3102 Highway 14, Millbrook, AL 36054, Phone: 334-285-1273, Fax: 334-285-1274
 D. All proposed substitutions shall be approved in writing at least ten (10) days prior to the bid date.
 E. It shall be understood that the Architect/Engineer has the authority to reject any material or equipment used which is not specified or approved, or showing defects of manufacture or workmanship, before or after such material or equipment is installed.

1.05. WORKMANSHIP:
 A. Execute all work so as to present a neat and workmanlike appearance when completed.

1.06. DESCRIPTION OF WORK:
 A. Furnish all labor and materials required to complete the electrical work indicated on the drawings or herein specified. Major work included in Section 16 shall be:
 B. Arrange with the local utility companies for providing such electrical services as indicated on drawings or herein specified. Any charges for electrical service to the facility by the utility company shall be included in the contractor's bid price.
 C. Remove or relocate all electrical or electronic services located on or crossing through the project property, either above or below grade, which would obstruct the construction of the project or conflict in any manner with the complete project or any code pertaining thereto.
 D. Furnish and install a complete electrical light and power system including but not limited to the connection of all meters, switchboards, panelboards, circuit breakers, power outlets,
convenience outlets, lighting fixtures, switches, and/or other equipment forming part of the electrical system.

E. Connect all electrical equipment whether furnished by this contractor or by others.

F. Furnish and install all disconnect switches not included as an integral part of equipment.

G. Furnish and install a complete Lighting Control System.

H. Furnish and install a complete Fire Alarm System compliant with applicable provisions of the International Building Code (IBC) and the National Fire Protection Association (NFPA) Standard No. 72.

I. Complete the alterations, additions, and renovations to the electrical system in the existing building as specified herein or as shown on the drawings.

J. Procure and pay for permits and certifications as required by local and state ordinances and Fire Underwriters certificate of inspection.

K. Visit the site and determine conditions that affect this contract. Failure to do so will in no way relieve the Contractor of his responsibility under his contract.

L. Submit to the Architect a certificate of final inspection from local and/or state inspection authorities.

M. Establish and maintain temporary electrical services for construction purposes.

1.07. DRAWINGS AND SPECIFICATIONS:

A. This Contractor shall examine drawings and Specifications relating to the work of all trades and become fully informed as to the extent and character of work required and its relation to all other work in the project prior to submission of bid and prior to the start of any construction.

B. Drawings and Specifications shall be considered as complementary each to the other. What is called for by one shall be as binding as if called for by both. Where conflicts occur, secure clarification from the Architect in advance of bidding; otherwise incorporate the more stringent conditions into the bid price.

C. Omissions from the drawings and specifications or the mis-description of details of work which are evidently necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the Contractor from performing such omissions and details of work; they shall be performed as if fully and correctly set forth and described in the drawings and specifications.

D. The drawings indicate diagrammatically the extent, general character, and the approximate location of the work to be performed. In the interest of clearness, the work is not always shown to scale or exact location. Check all measurements, locations of conduit, fixtures, outlets, and equipment with the detailed architectural, structural, and mechanical drawings, and lay out work so as to fit in with ceiling grids, ductwork, sprinkler piping and heads, and other parts. Take finished dimensions at the job site in preference to using scale dimensions.

E. Where the work is indicated but with minor details omitted, furnish and install the work complete so as to perform its intended functions.

F. Where doubt arises as to the meaning of the plans and specifications, obtain the Architect's decision before proceeding with parts affected; otherwise assume liability for damage to other work and for making necessary corrections to work in question.

G. Except as noted above, make no changes in or deviations from the work as shown or specified except on written order of the Architect.

1.08. EXISTING CONDITIONS:

A. Before submitting a bid, visit the site and ascertain all existing conditions.

B. Make such adjustments in work as are required by the actual conditions encountered.

C. No consideration will be given after bid opening for alleged misunderstandings regarding utility connections, integration of work with existing system, or other existing conditions.

1.09. SUBMITTALS:
A. Follow procedure outlined in Division 1.

B. Submittals shall be bound together and shall include a coversheet indicating the following:
 1. Project name
 2. Trade contractor’s name
 3. Supplier’s name
 4. Name and phone number of supplier’s contact person
 5. A list of each item submitted with manufacturers’ names and model numbers.

C. Within 20 days of award of contract and prior to beginning any work on the project submit six (6) copies of manufacturer’s drawings/data sheets for the following items to the Engineer for review:
 1. Conduits
 2. Cable Pulling tensions. Provide cable pull tension calculations (lateral and longitudinal) on all underground cable runs over 150 feet for cables sized #1 and larger. Provide one line diagram indicating pulling tensions on each run and number and size of each pull box along anticipated route. Calculations shall include changes in direction or elevation of feeder runs.
 3. Wiring Devices
 4. Conduit Wrapping Tape
 5. Panelboards
 6. Power system breaker coordination. Submit proper breaker settings recommendations with breaker coordination study.
 7. Contractor shall coordinate with mechanical/plumbing shop drawings prior to submitting power package to engineer. Adjust overcurrent devices accordingly.
 8. Disconnect Switches
 9. Dry Type Transformers
 10. Fire Stopping
 11. Lighting Control System
 12. Lighting Fixtures (include photometric data for each fixture)
 13. Fixture Support Equipment
 14. Secondary Surge Arresters
 15. Transient Voltage Surge Suppressors(Surge Protective Devices)
 16. Fire Alarm System: The fire alarm shop drawings shall bear the approval of the fire protection provider to insure all supervisory vavles and flow switches are being monitored by the fire alarm system. Coordinate with fire protection provider prior to bid and provide monitoring for all supervisory vavles and flow switches for entire building. Bid accordingly. Include conduit and cable layout, battery calculations, terminal to terminal wiring showing color code and wire numbers, and complete technical data on each system component. Additionally, the contractor or his/her fire alarm system vendor shall provide audibility calculations indicating compliance with all applicable provisions of NFPA 72 and the IBC. The contract drawings indicate a minimum design required to comply with applicable codes. However, since devices vary from manufacturer to manufacturer the contractor shall be responsible for furnishing any/all additional devices as required to provide audibility and visibility levels that comply with applicable sections of NFPA 72 and IBC.
 Furnish the Owner one set of as built drawings at completion of the project. Provide a copy of the fire alarm contractor’s Alabama State Fire Marshal’s Permit with the submittals for approval.

D. Submit samples upon request.

E. The Contractor is responsible for verifying all quantities and for verifying and coordinating dimensional data with the available space for items other than the basis of design.

F. Provide a ½”=1'-0” scale drawing of all electrical rooms containing more than a single panelboard section or containing a panelboard and other electrical and/or mechanical equipment. These drawings shall be submitted along with equipment data sheets.
G. The contractor shall review and approve, or make appropriate notations on each item prior to submittal to the architect. Submittals without contractor’s approval will be rejected.

1.10. COORDINATION OF SERVICE WITH OTHER TRades:
A. It shall be the responsibility of the Electrical Contractor to coordinate the electrical service characteristics to each piece of electrically operated equipment with all trades providing electrically operated equipment.
B. Within ten (10) working days of notification to proceed with construction from the Architect, the Electrical Contractor shall notify, in writing, all trades providing electrically operated equipment the characteristic of the electrical power being supplied to each piece of electrically operated equipment.
C. A copy of this notification shall be provided to the General Contractor and the Architect.
D. Be informed as to equipment being furnished by other trades, but not liable for added cost incurred by equipment substitutions made by others which require excess electrical wiring or equipment above that indicated on drawings or specified.
E. The contractor providing the equipment shall be responsible for the additional costs.

1.11. PROGRESS OF WORK:
A. Schedule work as necessary to cooperate with other trades, Do not delay other trades. Maintain necessary competent mechanics and supervision to provide an orderly progression of the work.

1.12. PROTECTION OF PERSONS AND PROPERTY DURING CONSTRUCTION:
A. Take all precautions necessary to provide safety and protection to persons and the protection of materials and property.
B. Protect items of equipment from stains, corrosion, scratches, and any other damage or dirt, whether in storage, at job site or installed. No damaged or dirty equipment, lenses, or reflectors will be accepted.
C. Live panelboards, outlets, switches, motor control equipment, junction boxes, etc., shall be protected against contact of live parts and conductors by personnel.

1.13. CLEANING UP:
A. During the progress of work, keep the Owner’s premised in a neat and orderly condition, free from accumulation of debris resulting from this work. At the completion of the work, remove all material, scrap, etc. not a part of this Contract.

1.14. AS-BUILT DRAWINGS, AND OPERATING AND MAINTENANCE INSTRUCTIONS:
A. Prior to the Final Acceptance Inspection the Contractor shall turn over to the Architect one set of reproducible "as built" drawings, including corrected fire alarm system shop drawings, three (3) sets of all equipment catalogs and maintenance data, manufacturers’ warranties, and three (3) sets of shop drawings on all equipment.

1.15. TESTING:
A. Upon completion of the work, conduct a thorough test in the presence of Architect or his representative, and demonstrate that all systems are in perfect working condition.

1.16. INSPECTIONS:
A. The contractor shall have all systems ready for operation and an electrician available to remove panel fronts, coverplates, fixture doors, etc., at the final inspection and any other scheduled inspections.
B. It is the contractor’s responsibility to have the job ready for inspections when they are scheduled. We will perform inspections as required by our contract. If project is not ready during inspection and requires a re-inspection by Gunn & Associates, then the contractor shall pay Gunn & Associates, P.C. for the re-inspection. The payment shall be made directly to Gunn & Associates, P.C. in the amount to be determined by engineer. Not to exceed $1,000 for single re-inspection fee. Payment must be received by Gunn & Associates prior to scheduling re-inspection.
C. Inspections for Temporary or Permanent Power required by any utility companies are not in our scope of work. If contractor needs Gunn & Associates, P.C. to perform inspections, contractor must include an inspection cost of $1,000 per inspection in their base bid. Payment must be received by Gunn & Associates prior to scheduling inspection.

1.17. DEMONSTRATION:
 A. By on-off, stop-start operation, demonstrate to the Owner or his representative, the use, working, resetting, and adjusting of each and every system. Submit statement initialed by the Owner that such demonstration has been made.

1.18. WARRANTY:
 A. Warrant the entire electrical system in proper working order. Replace, without additional charge, all work or material that may develop defects (ordinary wear and tear or damage resulting from improper handling excepted) within a period of one year from date of final to general contractor. Provide the owner with two bound copies of all manufacturers’ warranties.

1.19. TEMPORARY SYSTEMS:
 A. The Electrical Contractor shall be responsible for furnishing and installing equipment and materials necessary for providing electrical power and lighting where needed for the construction of the project.
 B. Electrical Contractor will be responsible for paying for and providing temporary construction power and lighting for entire job site. Coordinate with local jurisdictions and utility companies and pay all fees necessary to get temporary power to the job site. General Contractor shall be responsible for all monthly utility cost for duration of project or date of substantial completion.

1.20. SERVICE INTERRUPTION CLEARANCE WITH OWNER:
 A. Before submitting a proposal, check with the Owner concerning interruption of service to the existing electrical systems. No interruption shall be made except at such time and for such duration as approved by the Owner. The Contractor’s bid shall include all necessary over-time and weekend work.

1.21. DEFINITIONS:
 “AWG” - American Wire Gauge
 “ADA” – Americans with Disabilities Act
 “As required” - Any and all items required to complete the installation of an item so as to perform its intended function.
 “Circuiting” - Conductors, raceways, raceway fittings, and associated hardware.
 “EMT” – Electrical Metallic Tubing, “thin wall”
 “IBC” – International Building Code
 “Install” - furnish, install, and make all necessary connections to and/or for the item(s) indicated or specified.
 “Necessary” - Any and all items required to complete the installation of an item so as to perform its intended function.
 “NEMA”- National Electrical Manufacturers’ Association
 “NFPA” - National Fire Protection Association
 “PVC Conduit” – Rigid Nonmetallic Polyvinyl Chloride conduit
 “RGS Conduit” – Rigid galvanized steel conduit
 “UL” - Underwriters’ Laboratories, Inc.

PART 2 - MATERIALS

2.01. GENERAL:
A. This section includes all basic materials for raceways, fittings, busways, conductors, panelboards, switchboards, lighting fixtures and accessories, etc., as required for a complete installation.

B. All materials shall be new and listed by the Underwriters Laboratories. Material substitutions will be considered only when evidence of equality and suitability, satisfactory to the Architect has been presented in writing, with samples if requested by the Architect.

C. It shall be understood that the Architect/Engineer has the authority to reject any material or equipment used which is not specified or approved, or showing defects of manufacture or workmanship, before or after such material or equipment is installed.

2.02. CONDUITS:

A. Rigid Metal (Galvanized Steel-RGS) Conduit: Rigid metal conduit shall be mild steel piping, galvanized inside and outside, and conform to ASA Specification 080.1 and Underwriters’ Laboratories Specifications. By Sprang, Republic, Wheatland, Triangle or Pittsburgh.

B. Intermediate Metal Conduit (IMC): IMC shall be hot dipped galvanized inside and outside and manufactured in accordance with U.L. Standard #6 or #1242. By Allied or approved equal.

C. Electrical Metallic Tubing (EMT): EMT shall be high grade steel electro-galvanized outside and lacquer or enamel coating inside and conform to ASA Specifications 080.1 and Underwriters’ Laboratories Specifications. By Sprang, Republic, Wheatland, Triangle or Pittsburgh.

D. Rigid Nonmetallic Conduit (PVC): PVC conduit where exposed shall be high impact Schedule 80; below grand and below or in slab PVC shall be of high impact Schedule 40 PVC and shall conform to Underwriters’ Laboratories Standard UL-651. By Carlon, Kraley Pittsburgh, R.G. Sloan or Southwestern.

E. Rigid Aluminum: Rigid Aluminum conduit shall be manufactured from 6063, t-1 aluminum alloy and shall meet the requirements of Federal Spec. WW-C-540c and ANSI C80.5 and shall be U.L. listed in accordance with UL-6. Equal to products by V.A.W. of America.

2.03. COUPLINGS, FITTINGS, AND CONNECTORS:

A. RGS & IMC: By Appleton, Crouse-Hinds, Efcor, O-Z/Gedney, Raco, or Republic.

B. EMT: EMT fittings shall be all steel type setscrew or insulated throat compression type. Pressure indented or slip fit type will not be accepted. All connectors to be insulated. By Appleton, Efcor, Raco Steel City, or Thomas & Betts.

C. PVC: PVC fittings shall be of high impact PVC Schedule 40 or Schedule 80 to match the installed conduit. Joints shall be made with PVC solvent cement as recommended by manufacturer. By Pittsburgh, R.G. Sloan or Carlon.

D. Rigid Aluminum: Fittings used with Rigid Aluminum conduit shall be formed of the same alloy as the conduit or shall be copper free cast aluminum unless specifically indicated otherwise.

2.04. CONDUIT BODIES:

A. Conduit bodies shall be shall be malleable iron except in kitchen, dishwashing, and waste water treatment areas conduit bodies shall be copper free cast aluminum with stamped aluminum covers.

B. Covers shall be screw retained with wedge nut or threaded body. Covers on bodies installed outdoors shall be approved and rated for installation outdoors.

C. Bodies shall comply with NEC 370 and 373.

D. RGS & IMC: By Appleton, Crouse-Hinds, Efcor, O-Z/Gedney, Raco, or Republic.

E. Conduit cannot be used as ground. Provide separate insulated green grounding wire.

2.05. BUSHINGS:

A. Bushings up to and including 1” shall have a tapered throat.

B. Bushings 1-1/4” and larger shall be the insulating type.

C. Grounding bushings shall be specification grade insulated grounding type bushings with tin plated copper grounding saddles and shall be equal to O-Z/Gedney Type BLG or HBLG.
D. Bushings shall be zinc plated malleable iron or copper free cast aluminum.
E. Bushings for terminating Data, Telecommunications, control, CATV, and similar conduits above ceilings and at backboards may be PVC or Polyethylene insulating bushings equal to those manufactured by Arlington Industries and Bridgeport Fittings.

2.06. EXPANSION FITTINGS:
A. Conduit Expansion Joints shall be UL Listed.
B. Expansion joints in rigid metal conduits shall consist of a threaded malleable iron body, pressure bushing, watertight packing, pressure ring, gasket, insulating bushing, and external grounding jumper, and shall be equal to O-Z Gedney Type AX with Type BJ bonding jumper.
C. Expansion joints for EMT conduit shall be same as above with additional EMT couplings and connectors, and shall be equal to O-Z Gedney Type TX with Type BJ bonding jumper.
D. Expansion joints in PVC conduit shall be equal to Carlon Series E945.
E. Expansion joints shall provide a minimum of 4" of conduit movement.

2.07. BELOW GRADE THRU WALL WATER SEALS:
A. Thru wall water seals for conduits penetrating exterior below grade concrete walls shall be seal systems by O-Z/Gedney or The Metraflex Company.
B. Thru wall water seals for conduits penetrating exterior below grade concrete walls shall be Metraseal thru wall water seals by The Metraflex Company.

2.08. CONDUIT ACCESSORIES:
A. Conduit clamps and supports for metallic conduit shall be galvanized steel by Efcor, Steel City, or Mineralac. Conduit fittings by Appleton, Crouse-Hinds, O-Z/Gedney, Pyle-National or approved equal.
B. Conduit clamps and supports for nonmetallic conduit shall be nonmetallic high impact PVC by Carlon, Pittsburg, or Sloan.
C. Conduit clamps for aluminum conduits shall be stainless steel or cast copper free aluminum with stainless steel fasteners.

2.09. FLEXIBLE CONDUIT:
A. Liquidtight flexible metal conduit:
 1. Neoprene-jacketed liquidtight flexible metal conduit.
 2. Equal to Anaconda Sealtite.

2.10. ELECTRICAL TAPES:
A. General use electrical tape shall be 8 mil (.008") thick, minimum, premium grade, pressure sensitive, flame retardant, vinyl electrical tape meeting UL 510, ASTM-D-3005, and MIL-I-24391C. The tape shall be equal to 3M No. 88 or Plymouth Premium 85 CW.
B. Rubber tape used as primary tape shall be a 30 mil (.030") thick, minimum self-amalgamating, low voltage rubber tape rated for use through 600 V. Rubber tape shall be equal to 3M No. 2150 or Plymouth 122 Rubber Tape.
C. Electrical filler tape shall be a 125 mil (.125") thick, minimum, self-amalgamating, low voltage insulating compound rated for use through 5 kV. Filler tape shall be equal to 3M SCOTCHFILL or Plymouth 125 Electrical Filler Tape.

2.11. PIPE WRAPPING TAPE:
A. Pipe wrapping tape shall be a 10 mil (.010") thick, minimum, pressure sensitive, vinyl tape manufactured for pipe wrapping applications.
B. The tape shall be UV, bacteria, and fungus resistant.
C. The manufacturer’s name and tape type shall be printed on the back of the tape.
D. Pipe wrapping tape shall be equal to Plymouth Rubber Co. PLYWRAP 11, or 3M No. 50.

2.12. WIRE NUTS:
A. Wire nuts for conductor splicing shall be winged type connectors with a square, plated steel spring and flame retardant thermoplastic shell.
B. The connector shall be rated for the number and size conductors being connected.
C. The Wire Nuts shall be rated for 105°C. And UL 486C listed.
D. Wire nuts shall be equal to connectors by Ideal/Buchanan, 3M/Scotch, or T & B,

2.13. SPLIT BOLT CONNECTORS:
A. Split bolt connectors for splicing conductors shall be UL 486A listed, shall be tin plated copper, and shall have a hexagonal head and nut.
B. Split bolt connectors for conductors size AWG #4 and larger shall have a serrated spacer bar between conductors.
C. Split bolt connectors for splicing conductors AWG #12 through #6 shall be equal to Ilsco Type SEL and Type SK for AWG #4 and larger conductors.

2.14. MULTI-TAP CONNECTORS:
A. Multi-tap connectors shall be insulated type
B. Multi-tap connectors shall be rated for the conductor sizes indicated on the drawings.
C. The connectors shall be provided for the number of conductors indicated, including any future taps shown, plus a minimum of one additional tap.
D. Multi-tap connectors shall be equal to Ilsco Type PCT or Type PED-CP.

2.15. WATERPROOF WIRE JOINTS:
A. Splices made below grade shall be made connectors, UL listed as waterproof, for below grade applications.
B. Waterproof Twist On Connectors for Up to AWG #12 Conductor: Single piece wire nut pre-filled with silicone sealant. Sealant shall be rated for 45-400 degrees F. Connectors shall have same insulation rating as conductors. Sizes shall be available for connecting up to #6 conductors. Connectors shall be UL listed as waterproof for below grade applications and equal to Ideal Buchanan B-Cap Twist and Seal Wire Connectors, King Safety Products, Tyco/Raychem GelCap SL, or equal.
C. Waterproof Stub Splice Kit for up to AWG #2/0 Conductors: Kit containing connector block, outer waterproof sleeve, and lubricant. Sleeve shall have same insulation rating as conductors. Kit shall be rated for feeder wire sizes #1 through #2/0 and tap wire sizes of #14 through #6. Connectors shall be UL listed as waterproof for below grade applications and equal to Tyco/Raychem GelCap SL.
D. Waterproof In-line Splice Kit for up to AWG #2/0 Conductors: Kit containing connector block, outer waterproof sleeve, and lubricant. Sleeve shall have same insulation rating as conductors. Kit shall be rated for wire sizes #6 through #350 kcm. Connectors shall be equal to Tyco/Raychem GTAP.
E. Waterproof Splice Kit for Conductors above AWG #2/0: Kit containing connector block, outer waterproof sleeve, and lubricant. Sleeve shall have same insulation rating as conductors. Kit shall be rated for wire sizes #14 through #2/0. Connectors shall be equal to Tyco/Raychem GHFC.

2.16. PLASTIC MARKING TAPE FOR MARKING UNDERGROUND CABLES AND CONDUITS:
A. Plastic marking tape shall be acid and alkali-resistant polyethylene film, 6 inches wide with minimum thickness of 0.004 inch.
B. Tape shall have a minimum strength of 1750 psi lengthwise and 1500 psi crosswise.
C. The tape shall be manufactured with integral wires, foil backing or other means to enable detection by a metal detector when the tape is buried up to 3 feet deep.
D. The tape shall be of a type specifically manufactured for marking and locating underground utilities.
E. The metallic core of the tape shall be encased in a protective jacket or provided with other means to protect it from corrosion.

F. Tape color shall be as specified in the table below and shall bear a continuous printed inscription describing the specific utility.
 Red: Electric
 Orange: Data, Telephone, Television,

2.17. FIRE STOPPING:
 A. Fire sealant shall be intumescent caulk, putty, sheet and/or wrap/strip as required to attain the proper rating.
 B. Caulk shall be equal to 3M CP25 N/S and/or S/L.
 C. Putty shall be equal to 3M Fire Barrier Moldable Putty.
 D. Sheet equal to 3M CS195.
 E. Wrap/strip equal to 3M FS195.
 F. Equal products by Dow Corning, Hilti, and Metacaulk will be accepted.

2.18. SPACERS FOR CONCRETE ENCASED ELECTRICAL DUCTS:
 A. Spacers shall be interlocking high impact plastic assemblies, which provide horizontal and vertical spacing, and hold the ducts and re-bar, where applicable, in place.
 B. The spacers shall be equal to Carlon Snap-Lok Spacers.

2.19. JUNCTION BOXES (THRU 4-11/16"):
 A. Sheet Metal: To be standard type with knockouts made of hot dipped galvanized steel, By Steel City, Raco, Appleton or approved equal.
 B. Cast: To be type FS, FD, JB, GS or SEH as required for application.

2.20. JUNCTION AND PULL BOXES (LARGER THAN 4-11/16"):
 A. Shall be cast metal for all below grade exterior use and where indicated on plans. All other shall be oil tight, JIC boxes not less than 16 gauge, equal to Hoffman type "CH" boxes.

2.21. PULL BOXES:
 A. Galvanized sheet metal screw-cover type with UL label a as produced by Austin, B & C Metal Stamping Company, E-Box, Hoffman, Wiegmann, or approved equal.

2.22. JUNCTION AND TERMINAL BOXES FOR AUXILIARY SYSTEMS:
 A. Junction boxes for auxiliary system circuiting splicing shall be formed of galvanized steel.
 B. Boxes shall have hinged front, locking door(s).
 C. Metal back plates shall be provided for mounting terminal strips or other devices.
 D. Screw terminal strips shall be provided with a minimum of 25 percent spare terminals.
 E. Boxes shall be sized to accommodate the terminal blocks and conductors, providing code required bending space.
 F. Boxes for auxiliary systems shall be manufactured by Austin, E-Box, Hoffman, or Wiegmann.
 G. Provide complete back boxes for all surface mounted devices. Back box shall have knockout on top and bottom as needed. Surface mounted junction boxes with devices mounted to it will not be accepted. Wiremold boxes will be accepted.

2.23. AUXILIARY GUTTERS (WIRING TROUGHS):
 A. Gutters shall be of sizes shown and/or required by the NEC (whichever is larger), constructed of code gauge, galvanized sheet steel, painted ANSI 61 gray.
 B. Gutters shall be UL listed and shall be of NEMA 3R construction in wet or damp locations or shall be as indicated on the drawings.
 C. Gutters shall be as produced by Austin, B & C Metal Stamping Company, E-Box, Hoffman, Wiegmann, or approved equal.
2.24. STRUT SYSTEM FOR SUPPORT OF ELECTRICAL EQUIPMENT:
A. Strut shall be 1-5/8" except where heavier strut is required to support the load, for rigidity, or where specifically indicated otherwise.
B. Cold-formed steel, ASTM A 570 or A 446 GR A.
C. Stainless Steel Strut: Type 304, ASTM A 240.
D. Hot Dipped Galvanized Steel Strut: Zinc coated after manufacturing operations are complete, ASTM A 123 or A 153
E. Electro-galvanized Steel Strut: Electrolytically zinc coated, ASTM B 633 Type III SC 1.
F. Fittings: Same material as strut, ASTM A 575, A 576, A 36, A 635, or A 240.
G. Zinc Primer: As recommended by strut manufacturer.
H. Strut Systems shall be as manufactured by B-Line, Erico, Globe, Kindorf, MasterStrut, Power Strut, T&B SuperStrut, or Unistrut.

2.25. OUTLET BOXES:
A. General: Except as noted, boxes shall be standard hot dipped galvanized steel at least 1-1/2" deep, of metal at least 1/16" thick; sized to accommodate devices and conductors per NEC Article 370; product of Appleton, National, Steel City, or approved equal.
B. Ceiling and Wall Bracket Outlets: 4" octagonal boxes with plaster rings appropriate for finish surface.
C. Typical boxes (for switches, receptacles and auxiliary systems):
 1. 4" square boxes ganged as required. Box volume shall be in accordance with NEC Section 370 – provide extensions as required.
 2. Furnish with 3/4" plaster rings where employed in plaster, 1" tile covers where used in ceramic tile, 1" plaster rings where set in exposed concrete, and otherwise appropriate for surface and construction.
 3. Use 4-11/16" square, 2-1/8" deep boxes where more than 10 conductors enter the boxes. Provide extensions as required to provide volume per NEC.
 4. Where existing walls are furred out with shallow hatch channel and sheet rock then the contractor will be required to use a shallow junction as required.
 5. All exposed junction boxes for receptacles, communications devices, switches, and fire alarm devices shall be provided with back boxes. Do not use standard junction boxes when exposed. No exposed edges of devices plates will be allowed. No knockouts on the side of the box. Boxes shall be similar to Wiremold 500 & 700 Series.
D. Boxes in Exposed (or Thin-Coat Plastered) Masonry: Where conduit connections permit, employ solid flush-type, square-cornered, masonry boxes with turned-in device holders; otherwise employ typical box with 1-1/2" square-cut tile cover.
E. Boxes used with Exposed Conduit: 4" square utility boxes.
F. Exterior Boxes: Galvanized cast-metal boxes, Crouse-Hinds Type FS or FD as appropriate. Make weatherproof with gasketed covers. Equal products by Appleton, Killark, O-Z/Gedney, or approved equal will be accepted.
G. Exterior Boxes: All receptacle boxes shall be recessed unless specifically called out not to be. This includes exterior receptacles in all masonry type walls including but not limited to Pre-cast, Brick, Block, etc.
H. Boxes used with Recessed Lighting Fixtures: Provide a 4" square box with blank cover.
I. Boxes in Dry Wall Construction: Sectional type switch boxes at least 2-1/2" deep may be used instead of typical box (but not where dry wall finish is applied over masonry back-up and not where multi-gang devices occur).

2.26. CONDUCTORS AND CABLES:
A. Power Conductors
 1. The ungrounded conductors (phase) and the grounded conductor (neutral) of each voltage system being installed shall be phase identified the full length of the conductor with the
color characteristics manufactured in the insulation of cable from the cable manufacturer. Required color cable will then be installed for the specific voltage system as identified in these specifications.

2. All conductors shall be copper with not less than 98% conductivity and with current carrying capacities per N.E.C. for 60°C. for sizes through #1 AWG and 75°C for conductors #1/0 and above.

3. All conductors shall have manufacturer's name, type insulation, and conductor size imprinted on jacket at regular intervals.

4. Conductors of size #10 and smaller shall be solid copper conductors with 600 volt type THHN or THWN insulation.

5. Conductors of size #8 and larger shall be stranded copper conductors with 600 volt type THHN or THWN insulation.

6. All motor branch circuits, HVAC, and plumbing equipment shall be stranded copper conductors with 600 volt type RHH-RHW insulation.

7. All conductors installed in conduit below grade shall be rated for wet location.

8. Manufacturer: Conductors shall be products of GE, Triangle, Phelps-Dodge, Anaconda, Rome, Habirshaw, General Cable, or approved equal.

9. Fixture Wire:
 a. Conductors feeding into fixtures, other than fluorescent fixtures, of 300 watts or less shall be #14, 200°C., type SF-2, for fixtures of more than 300 watts #12, 200°C., type SF-2 shall be used.
 b. Conductors pulled through fluorescent fixtures shall have Type TFN or TFFN fixture wire, rated 90°C.
 c. Conductors shall be by Dodge, Anaconda, Rome General Cable or Southwire.

B. Control and Signal Wire: Conductor type TFF, minimum size #16 copper and fully color-coded, shall be used. Conductors shall be by Anaconda, Houston Wire & Cable, General Cable, Phelps Dodge, Rome, or Southwire.

2.27. WIRING DEVICES:

A. General: Manufacturer's and catalog numbers listed are used to establish style, type and quality. Unless otherwise indicated on drawings, all wiring devices shall be UL listed, side-wired specification grade.

B. Manufacturers: Equal devices by Hubbell, Leviton, and P & S will be accepted. All devices shall have plaster ears.

C. Wall switches: 120/277V, 20A, AC, flush enclosed, quiet type switches with thermoplastic body and polycarbonate toggles. Switches shall meet Federal Specification WS-896. Switches shall be, Hubbell 1200 series, Leviton 1200 series, or P & S PS20AC series single pole, 2-pole, 3-way, or 4-way as required.

F. Ground Fault Circuit Interrupt Receptacles: 125V/20 amp ground fault circuit interrupting receptacle for personnel protection, NEMA 5-20R configuration, Equal to Hubbell #GF5362, Leviton #6599, or P & S 2091. Each GFCI symbol on drawing indicates a GFCI type receptacle. Do not through-wire non-GFCI receptacles from GFCI receptacles where ground fault protection is required. All exterior receptacles shall be ground fault interrupting type with weatherproof coverplates.
G. Faceless Ground Fault Circuit Interrupter: 125V, 20 amp ground fault circuit interrupter UL listed for personnel protection, equal to Hubbell GFR5350 Series, Leviton 6490, or Pass & Seymour Series 2081.

H. Single Receptacles: Flush Bakelite receptacles with side wiring and grounding terminal, voltage, amperage, and configuration as required for circuit indicated.

I. Each single or multi outlet receptacle, other than straight blade, 15 or 20 amp, 120 volts, NEMA 5-15R or NEMA 5-20R, shall be provided with matching cord plugs.

J. Wiring devices shall be of color as directed by Architect. Devices must be available in ivory, brown, black, white, and gray. Devices connected to the emergency generator shall be red in color.

K. All projects classified as an elementary school type facility shall be provided with tamper proof type receptacles.

2.28. DEVICE PLATES:

A. Type appropriate for the associated wiring device, equal to Sierra Stainless Steel Smoothline. Device plates shall be of color as directed by Architect. Devices must be available in ivory, brown, black, white, and stainless steel. Provide single plate of proper gang where more than one device occurs (do not gang dimmers with rocker switches).

B. Damp Location: 20 amp, 125 and 250 volt receptacles - Covers shall be weatherproof when plugs are not installed, provide cast aluminum weatherproof coverplates with single lift cover and gasket equal to Hubbell CWP26H.

C. Wet Locations, 20 amp, 125 and 250 volt receptacles: Covers shall be weatherproof In-Use covers, rated NEMA 3R when in use and shall be constructed of cast aluminum with sealing gasket. Covers shall be equal to products by Hubbell, Leviton, Steel City, T & B, and Taymac.

D. Coverplates for exposed cast aluminum boxes in kitchen and dishwashing areas shall be cast coverplates, without lift cover, unless specifically indicated otherwise on the drawings.

E. Color: Wiring device cover plates shall be of color as indicated on drawings or directed by Architect. Devices must be available in ivory, brown, black, white, gray, and stainless steel.

F. Jumbo and Mini-Jumbo plates will not be accepted.

2.29. OCCUPANCY SENSORS AND ACCESSORIES FOR LIGHTING CONTROL:

A. Occupancy sensors shall be totally passive in nature, in that the sensors shall not emit or interfere with any other electronic device, or human characteristic. Sensors shall be dual technology, i.e.: Passive Infrared (PIR) and Microphonic.

B. PIR shall initiate an "on" condition and the PIR or microphones shall maintain the load "on".

C. Upon detection of human activity by the detector the lights shall come on and a time delay shall be initiated to maintain the lights on for a pre-set time period. The time delay shall be factory set and field adjustable from 30 seconds to 20 minutes.

D. All devices shall be factory warranted for 5 years.

E. All sensors shall be low voltage, 12 to 24 volts and shall work in conjunction with remote power packs.

F. Occupancy sensors shall be as shown on drawings.

2.30. GROUNDING:

A. Ground Rods shall be ¾" x 10’ copperclad steel.

B. All grounding conductors shall be copper.

2.31. LIGHTING FIXTURES

A. General:
 1. All Lighting Fixtures shall be UL labeled.
 2. Fixtures installed in fire rated ceilings or ceiling assemblies shall be rated for installation in fire rated ceilings.
 3. Furnish fixtures complete with lamps, ballasts and internal wiring factory installed.
4. Fixtures shall be furnished as specified herein and as shown on the fixture schedule on the plans. Catalog numbers shown are for basic units; furnish all fixtures complete with flexible connections, trim, plaster frames, and all other appurtenances necessary to the installation.

5. Substitutions: Reference to a specific manufacturer’s product is made to establish a standard of quality and design, and to give a general description of the basic type desired. Equal products by the listed manufacturers will be accepted subject to the Engineer’s approval.

6. It shall be the responsibility of the contractor to verify the exact type ceiling, type fixture mounting and trim, and recessing depth of all recessed fixtures prior to purchasing any fixtures.

7. Stems on stem mounted fixtures shall be approved ball aligner type, swivel 30 degrees from vertical with swivel below canopy. Paint stems the same color as the fixture trim. Stems in unfinished areas may be unpainted conduit.

8. High and low bay fixtures shall be equipped with safety chains. Every suspended fixture in Gymnasium shall have safety chains.

9. Fixtures installed on the exterior of buildings, on poles, or on pedestals shall be rated for wet location installation.

10. All high bay, exit, and emergency fixtures installed in gymnasiums, hangars or similar use areas shall be provided with wire guard.

B. Emergency and Exit lighting Fixtures shall be equipped with a Self-testing module which shall perform the following functions:

1. Continuous monitoring of charger operation and battery voltage with visual indication of normal operation and of malfunction.

2. Monthly discharge cycling of battery with monitoring of transfer circuit function, battery capacity and emergency lamp operation with visual indication of malfunction. The battery capacity test may be conducted by using a synthetic load.

4. Modules shall have low voltage battery disconnect (LVD) and brownout protection circuit.

5. All lighting fixtures and exit signs shown as emergency on drawings shall be provided with a minimum 1100 lumen emergency battery ballast capable of 90 minutes of illumination. No exceptions.

C. Lamps: Type and size as scheduled, GE, Osram/Sylvania, Phillips, or approved equal.

1. LED bulb shape shall comply with ANSI C79.1. Lamp base shall comply with ANSI C81.61.

2. Minimum CRI of LED lamps shall be 80 with a color temperature as shown on drawings.

3. Rated life of all LED lamping shall be a minimum of 50,000 hours failure to 75% of lamp output.

4. LED lamping shall be capable of dimming from 100% to 0%.

2.32. PANELBOARDS:

A. General: All panelboards shall be dead front type manufactured and installed in accordance with UL and NEMA standards, and shall carry a UL label. Ampacity, service voltage, and configuration shall be as indicated on drawings. Panelboards shall be clearly marked with ampacity, voltage, and maximum short current ratings.

B. Manufacturer: Panelboards shall be as manufactured by Cutler-Hammer, GE, Square D, or Siemens.

C. Enclosure:

1. Panelboard enclosures shall be as indicated on drawings.

2. Unless otherwise indicated, all boxes shall be constructed of galvanized (or equivalent rust-resistant) sheet steel with hinged front trim.

3. Fronts shall be door in door with two lockable latches to open door, lock, and latch. All panelboard locks shall be keyed alike. Piano hinges with screw latches will not be permitted.

4. Fronts shall be finished with gray baked enamel over a rust-inhibiting phosphatized coating.
5. All dual section panels shall be equal in size. Sub-Feed circuit breakers will not be allowed to feed second section.
6. Sub-Feed circuit breakers feeding additional panels or equipment shall be branch mounted.
7. Provide permanent numbering of the panelboards. Stickers are not considered permanent.
8. Any panelboard schedule that indicates more than 42 circuits shall be provided in two equally sized panelboards.
9. Main circuit breakers shall be centered mounted. Main breaker cannot be mounted on buss bars with other circuit breakers.

D. Buss Assembly:
1. Bussing shall be copper.
2. The buss assembly A.I.C. shall be rated as indicated on drawings. Ratings shall be established by heat rise tests, in accordance with UL Standard 67.
3. All bussing shall accept bolt on circuit breakers.
4. Current carrying parts of all bussing shall be plated. In lighting and receptacle panels, bussing shall be designed for connection to the branch circuit breakers in the phase sequence format. Distribution panelboards shall be fully bussed.
5. Ground bars shall be provided in all panelboards.
6. Neutral bar shall be fully sized with lugs suitable for incoming and outgoing conductors.
7. Provide insulated ground buss where indicated on the panelboard schedules.

E. Circuit Breakers:
1. Circuit breakers shall be quick-make, quick-break, thermal magnetic, molded case, bolt on type.
2. Circuit Breakers shall be numbered and arranged as indicated on the panelboard schedules and/or single line wiring diagrams. Numbers shall be permanently attached to trim.
3. SWD Circuit Breakers: Single pole circuit breakers rated 15 and 20 amperes and intended to switch 277 volts or less fluorescent lighting loads shall be UL rated for switching duty and shall be marked "SWD".
4. HACR Circuit Breakers: Circuit breakers 60 amperes or below, 240 volts, 1-, 2-, or 3-pole, intended to protect multi-motor and combination-load installations involved in heating, air conditioning, and refrigerating equipment shall be UL listed as HACR type and shall be marked "Listed HACR Type."
5. Circuit breakers serving fire alarm systems, dedicated emergency/exit lighting circuits, and area of rescue communications systems shall be equipped with a screw-on, mechanical handle blocking device which locks the circuit breaker in the “ON” position.
6. Circuit breakers serving circuits in residential bedrooms shall be Arc Fault Interrupting(AFI) type circuit breakers and shall be UL 1699 listed.

F. Directories:
1. Each panelboard shall be equipped with a metal directory frame with a clear cover welded to the inside of the door.

G. Equipment Short Circuit Rating: Short Circuit Interrupting Ratings shall be as indicated on the plans and schedules. Unless specifically indicated otherwise all rating are “Fully Rated” capacities. Where no rating is given, the contractor shall verify the available short current with the serving utility and provide equipment rated accordingly.

H. Lighting panelboard cans shall be a maximum of 20” wide and 5 ¾” deep. Cans of multi-section panelboards shall be the same size.

I. Provide nameplate as called out on drawings.
J. All circuit breakers 1200-amp and up shall comply with NEC Article 240.87 Arc Energy Reduction.
K. All flush mounted panel shall be provided with six (6) ¾” conduit stubbed up above accessible ceiling.

2.33. DISTRIBUTION PANELBOARDS:
A. Furnish and install distribution and power panelboards as indicated in the panelboard schedule(s) or single line wiring diagrams and where shown on the plans.
B. Panelboards shall be dead front, safety type equipped with thermal magnetic, molded case circuit breakers with trip ratings as indicated on the schedule(s).
C. Panelboard bussing shall be copper.
D. Panelboard buss structure and main lugs or main breaker(s) shall have the fault current ratings as indicated on the drawings. Ratings shall be established by heat rise tests conducted according to UL Standard UL67.
E. Circuit breakers shall be equipped with individually insulated, braced and protected connectors. The front faces of all circuit breakers shall be flush with each other.
F. Main circuit breakers shall be centered mounted. Main breaker cannot be mounted on buss bars with other circuit breakers.
G. An engraved phenolic label shall be permanently attached to the front of the panelboard adjacent to each circuit breaker identifying the load served by the circuit breaker.
H. Automatic tripping shall be clearly shown by the breaker handle taking a position between ON and OFF when the breaker is automatically tripped.
I. Provisions for additional breakers shall be such that no additional connectors or hardware will be required to add breakers.
J. The panelboard assembly shall be enclosed in a steel cabinet. The rigidity and gauge of steel shall be as specified in UL Standards. End walls shall be removable. The size of wiring gutters shall be in accordance with the National Electrical Code, NEMA, and UL Standards for panelboards.
K. Cabinets shall be equipped with four piece fronts.
L. The panelboard interior assembly shall be dead front with panelboard front removed.
M. Main lugs or main breaker shall be barriered on live sides.
N. The barrier in front of the main lugs shall be hinged to a fixed part of the interior. The end of the buss structure opposite the mains shall be barriered.
O. Circuit breakers serving Fire Alarm Systems, Security Systems, and/or Emergency/Exit lights shall be equipped with mechanical, screw-on type, locking devices. These devices shall not be padlock type devices.
P. Panelboards shall be listed by Underwriters' Laboratories and to bear UL label. Panelboards shall be rated for use as Service Entrance Equipment where required by the National Electrical Code. Panelboards shall be by Cutler-Hammer, General Electric, Square D, or Siemens.
Q. Provide nameplate as called out on drawings.
R. All circuit breakers 1200-amp and up shall comply with NEC Article 240.87 Arc Energy Reduction.
S. All flush mounted panel shall be provided with six (6) ¾” conduit stubbed up above accessible ceiling.

2.34. SAFETY SWITCHES:
A. Furnish and install safety switches as indicated on the drawings.
B. Switches installed on 277/480 volts systems shall be rated for 600 volts and those installed on 120/208 volt or 120/240 volt systems shall be rated for 240 volts.
C. Switches shall be NEMA Heavy Duty Type HD and Underwriters’ Laboratory listed. Safety switches shall be Cutler Hammer, Siemens, Square D, or General Electric.
D. General Duty disconnects will not be accepted.
E. Enclosures for switches mounted outdoors shall be NEMA 3R or as indicated on the plans.
F. Enclosures for switches installed in kitchen and dishwashing areas shall be NEMA 4X stainless steel or as indicated on the plans.
G. All safety switches for equipment with remote controls shall be equipped with a control circuit disconnect interlock.

H. Switches shall be lockable in the “ON” and in the “OFF” positions.

I. Provide each disconnect with a nameplate that indicates equipment name, voltage/phase, and feed from location.

J. Provide keyed brass locks on all disconnects that is located on the exterior of the building or in any area that is accessible to children or the public. All the brass locks shall be keyed the same, and turn over 10 sets of keys to the owner at substantial completion.

K. Disconnect locations shown on drawings is diagrammatically shown. Disconnects shall be coordinated with other trades and placed in the optimal locations to serve equipment and shall be installed in the least obtrusive location. Disconnects will have to be moved at the cost of the contractor when there is conflicts with NEC clearances, access to space, or servicing of equipment. Architect/Engineer will have final judgment of proper location.

2.35. MANUAL MOTOR STARTERS (TUMBLER SWITCH TYPE WITH OVERLOAD PROTECTION):

A. Starting and thermal overload protection for single phase motors 1/8 Hp to 1 HP shall be provided by manual motor starters with overload units rated as required by the specific motor to be served.

B. Switches installed for site disconnect switches shall be equipped with padlocking provisions.

C. Starters shall be by Cutler Hammer, General Electric, or Siemens with NEMA Type 1 enclosure or NEMA Type 3R enclosure where installed outdoors.

2.36. INTEGRAL HORSEPOWER MANUAL MOTOR STARTERS:

A. General: Manual motor starters for three phase motors shall be Integral Horsepower type sized as required for the motor served. Unless otherwise indicated, starters shall be full line voltage, single speed, and non-reversing type with push-button start-stop operation.

B. Enclosures: Starters shall be furnished with NEMA 1 surface mount enclosure or NEMA 3R enclosures for outdoor installation unless otherwise indicated.

C. Thermal protection: Each starter shall be equipped with thermal overload protection in all ungrounded phases. Protection shall consist of thermal overload relays meeting NEMA ICS 2, mounted within the starter. The proper size and number of heater elements shall be installed in each starter.

D. Starters shall be by Cutler Hammer, General Electric, or Siemens with NEMA Type 1 enclosure or NEMA Type 3R enclosure where installed outdoors.

2.37. TRANSIENT VOLTAGE SURGE PROTECTORS (SURGE PROTECTIVE DEVICES):

A. Provide transient voltage surge protectors (Surge Protective Devices) where indicated on the plans. At a minimum provide on all service entrance panelboards/switchboards and any panelboard/switchboards on the secondary side of a dry-type transformer.

B. Service Entrance Panelboards and at Subpanel Protectors shall be listed and labeled and components recognized in accordance with UL 1283 and UL 1449 Second Edition, including highest fault current of Section 37.3.

C. All devices shall meet or exceed the following:
 2. Minimum surge current capability, single pulse rated, per mode:
 a. Service Entrance – 100 kA (200 kA per phase)
 a. Distribution and branch panelboards – 80 kA (160 kA per phase)
 3. UL 1449, Second Edition, Listed and Labeled, and Recognized Component Suppressed Voltage Ratings shall not exceed (1.2x50µs, 6kV open circuit and 8x20µs, 500A short circuit test wave forms at end of 6” lead):

<table>
<thead>
<tr>
<th>Voltage</th>
<th>L-N</th>
<th>L-G</th>
<th>N-G</th>
<th>L-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120v</td>
<td>400</td>
<td>400</td>
<td>330</td>
<td>700</td>
</tr>
<tr>
<td>480Y/277V</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>1500</td>
</tr>
</tbody>
</table>
4. Testing shall be done at the end of 6" leads with the complete unit including any fuses and all other components making up the unit.

D. The devices shall have a minimum EMI/RFI filtering of –50dB at 100kHz with an insertion ratio of 50:1 using MIL-STD-220A methodology.

E. Devices shall utilize MOV’s of 25 mm diameter or larger, shall have pilot lights visible on the outside of the enclosure to indicate device operating condition, and shall provide contacts for remote monitoring of device condition.

F. Devices shall be modular in design with individual module fusing and thermal protection.

G. Devices shall incorporate visual alarm signals that indicate the failure of a single MOV and total loss of protection.

H. Wye connected devices shall provide L-L, L-N, L-G, and N-G surge diversion with L-N/L-G bonded at service entrance devices. Delta connected devices shall provide L-L and L-G protection.

I. Data Line Surge Protectors: Data Line Surge Protectors shall be UL 497B listed and labeled. The units shall be heavy duty devices utilizing a combination of silicone diodes and gas tube technology to provide surge protection.

J. All devices shall have a minimum warranty period of five years, incorporating unlimited replacement of suppressor parts if they fail during the warranty period.

K. Transient voltage surge suppressors shall be manufactured by AC Data Systems, Advanced Protection Technologies, Current Technologies, Cutler-Hammer, General Electric, Joslyn, Liebert, or MCG.

2.38. SECONDARY SURGE ARRESTERS:
 A. Secondary surge arresters shall be UL listed under UL Classification (Lightning Protection) Surge Arresters(OWHX).
 B. Surge arresters shall be rated at same voltage and phase configuration as service.
 C. Arresters shall be equal to Cooper Power Systems ASZH Series, Cutler-Hammer, GE Tranquell, Joslyn Electronic Systems, Leviton, models as required to match the voltage of the system served.

2.39. FUSES:
 A. General: Fuses shall be UL listed time delay types with a minimum interrupting rating of 100,000 amps symmetrical.
 B. 200 amps and below: Provide Class RK-5 current limiting, time delay, rejection type as manufactured by Busman Manufacturing, Ferraz Shawmut, or Littlefuse.
 C. 201 to 600 amps: Class RK-1, current limiting, time delay, rejection type as manufactured by Bussman, Ferraz Shawmut, or Littlefuse.
 D. Above 600 amps: Class L current limiting, time delay, as manufactured by Busman Manufacturing, Ferraz Shawmut, or Littlefuse.

2.40. LABELING:
 A. Provide laminated plastic nameplates for each panelboard, equipment enclosure, relay, switch, and device.
 B. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic 0.125 inch thick, white with black center core.
 C. Provide red laminated plastic label with white center core where indicated.
 D. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core.
 E. Minimum size of nameplates shall be one by 2.5 inches.
 F. Lettering shall be a minimum of 0.25 inch high normal block style.
 G. See Panelboard details for proper labeling of all panelboards.
2.41. PHOTOCELLS, TIME SWITCHES AND CONTACTORS:
 A. Photocells: Units shall have 1" diameter, hermetically sealed, cadmium sulfide sensing cell with 3-prong NEMA locking plug, rated for wet locations. Units shall have built-in time delay. Units shall be equal to Tork 5231 of correct voltage to match load or use with matching receptacle equal to Tork 2421.

2.42. FIRE ALARM SYSTEM (ADDRESSABLE):
 A. General: The contractor shall furnish and install a complete power limited automatic and manual fire alarm system, as specified herein and indicated on the drawings. The system shall include a central control panel, power supply, signal initiating devices, audible and visual alarm devices, provisions for connection of remote monitoring, a wiring system, and all necessary devices required to provide a complete operating system. The system shall comply with the applicable provisions of the National Fire Protection Association Standard Number 72 and meet all requirements of the local authorities having jurisdiction. The Underwriter’s Laboratories, Incorporated, or approved by the Factory Mutual Laboratories shall list all equipment and devices. The equipment shall be Walker County BOE standard EST. No deviation will be considered unless submittals are received and approved in writing, not less than ten days prior to bid date.

 B. Fire Alarm Document Box: The contractor shall furnish and install a fire alarm document enclosure as mandated by NFPA 72 Chapter 7.7.2.1. The system records documents box shall be constructed of 18 gauge cold rolled steel. It shall have a red powder coat epoxy finish. The cover shall be permanently screened with 1” high lettering and read “FIRE ALARM DOCUMENTS” with white indelible ink. The access door shall be locked with a ¾” barrel lock which is keyed the same as the manufacturer’s fire alarm panel. The enclosure shall supply 4 mounting holes to securely fasten to the wall. Inside the enclosure will accommodate standard 8.5” x 11” manuals and loose document records that may be placed in a three ring binder. All documents & software will be protected within the enclosure. A legend sheet will be permanently attached to the door for system required documentation, key contacts, and system information. The fire alarm document will have securely mounted inside the enclosure a minimum of 4 Gigabyte digital flash memory drive with a standard USB type B connector for uploading and downloading electronic information. The drive shall not be accessiable without tools to any person whom gains access to the enclosure. The enclosure shall also provide 2 Key ring holders with a location to mount standard business type cards for key contact personnel.

 C. Control Panel: The control panel shall be an addressable type panel capable of handling up to 128 devices, with 60 hour minimum standby battery. The panel shall provide for the connection of alarm circuits as indicated and shall include the following features.
 1. The fire alarm panel shall detect the operation of any initiating device, indicate by annunciator lamps the area of the alarm condition, and operate all alarm auxiliary devices.
 2. A pilot light shall normally be on, indicating that the system is receiving power from the building service supply. A failure of the building service supply shall cause the lights to go out.
 3. A trouble light and trouble buzzer, operating together, shall signal any trouble condition. Failure of the building service supply, disarrangement in the system wiring, or alarm condition shall cause that trouble light to come on and the trouble buzzer to sound. A self restoring silencing switch shall be provides to silence the trouble buzzer, which shall be arranged so the trouble light will remain on until the system is restored to normal.
 4. All notification signals shall be automatically locked in at the control panel until the operating device is returned to its normal condition, and the panel is manually reset. A switch shall be provided on the control panel for silencing the notification devices. The manual reset switch and the alarm-silencing switch shall be of the self-restoring type, which cannot be left in the abnormal position.
 5. The control panel shall provide relay contacts, of quantity as shown on the drawings, for control of heating, ventilation and air conditioning equipment. Such contacts shall be connected to air conditioning equipment, as indicated on drawings, for shutdown of individual units. Unit shutdown shall be initiated by duct-mounted smoke detectors unless
otherwise indicated. Operation of any initiating device shall open all control contacts and release all mechanically held doors.

6. The control panel shall be equipped with a front mounted Drill switch.

7. Metal oxide varistors (MOV’s) shall be provided on the system power supply and the municipal connection circuit to provide transient suppression protection to the control panel.

8. Power Supply: The power supply shall be 24 Volt DC, filtered and regulated, and shall provide sufficient power for all system functions. The fire alarm system main power supply shall operate at 120 Volt AC obtained from the building service. The 120-volt AC main power shall be converted to low voltage direct current for system operation. The system shall operate on 24 volts DC with trickle charged batteries provided as an emergency source of supply for operating the system in the event of interruption of main power. A changeover relay in the control panel shall transfer to standby power automatically upon main power failure and automatically reconnect to main power upon restoration.

D. Manual Stations: Manual Fire alarm stations shall be an addressable double acting, semi-flush mounted type. Stations with two sets of contacts will not be acceptable.

E. Smoke Detectors: Smoke detectors shall be addressable photoelectric type with base.

F. Heat Detectors: Addressable 135 degree/rate of rise type with base.

G. Duct Mounted Smoke Detectors: Duct detectors shall be addressable photoelectric type with sampling tube.

H. Contractor shall be responsible for coordinating prior to bid with mechanical drawings to confirm all duct mounted smoke detector locations and quantities. Contractor shall include in their base bid price the cost of all additional duct mounted smoke detectors and circuitry needed for locations.

I. Duct Detector Remote Test Station: Test stations shall be keyed with indicator light.

J. Audible/Visual Notification Devices: Audible/visual notification devices shall be four wire, horn/strobe units capable of 90 dB audible output, 100 candela-second output, shall be ADA compliant. Devices using incandescent lamps will not be acceptable.

K. Visual Notification Devices: Visual notification devices shall be strobe units capable of 100 candela-second visual output, shall be ADA compliant. Devices using incandescent lamps will not be acceptable.

L. Voice Control Panel: The Voice Control Panel shall play a digitally recorded message or microphone input for evacuation instructions.. The unit shall be installed next to the FACP, shall be equipped with emergency battery power, and shall provide a minimum of 75 watts of amplification.

M. Remote Microphone Panel: Remote Microphone Panels shall have a keyswitch control and shall be supervised.

N. Remote Amplifier: Remote amplifiers shall be 120 watt with battery backup.

O. Speaker/Visual Notification Devices: Speaker/Visual Notification devices shall be semi-flush, wall mounted, combination strobe/speaker assemblies with a minimum strobe output of 100 candela-second and equal to Simplex #4903-9144 Notifier #E70-24110W-FR for wall installation or Notifier #E70-W for speaker only ceiling installations.

P. Interface Relay:
1. Provide addressable control modules equal to Notifier #CMX-2 or interface relays equal to Notifier #MR-101/CR as required for interface of the Fire Alarm System with HVAC shut down, door holders, kitchen hood fire suppression system, and fan shut down, and any other locations required for proper interface and operation of systems.
2. A control module or interface relay shall be provided for each duct mounted smoke detector and shall be the point of interface between the Fire Alarm System and the HVAC Control System.
3. Contacts shall be rated for 10 A at 120 V.

Q. UL Fire Listed Cellular Communicator: Terminals and other necessary facilities shall be provided in the control panel to permit automatic transmission of trouble and alarm
signals over a UL listed cellular communicator to the fire, police, or other continuously manned facility, so designated for response to fire emergency. Provide 3-years of cellular and monitoring for the fire alarm system in the base bid from the date of substantial completion.

R. Auxiliary Remote Power Supplies/Notification Appliance Circuit Extenders (NAC Panels):
 1. Provide auxiliary power supplies and/or NAC Panels where required for notification devices, door holders, annunciators, or for other devices requiring supplemental power.
 2. Remote power supplies shall include a filtered and regulated 24 VDC output, provisions for automatic transfer to battery back-up in case of primary power failure, and batteries sized for 60 hours of operation.

S. Wire Guards: Wire guards shall be made of 3/16” minimum steel wire with a corrosion resistant coating equipped with integral mounting rings. Provide wire guards for all devices located in gymnasium.

T. All devices installed on the exterior shall be weatherproof.

U. All A/V devices in gymnasium at bleachers or any other facility with bleachers shall mount the fire alarm devices 80” above top of bleachers.

2.43. CONCRETE:
A. Concrete for electrical requirements shall be:
 1. Composed of fine aggregate (sand), coarse aggregate (graded from three-sixteenth (3/16) inch to one (1) inch), Portland cement, and water proportioned and mixed so as to produce a plastic, workable mixture.
 2. Aggregates shall be free from detrimental amounts of dirt, vegetable matter, soft fragments, or other foreign substances.
 3. Water shall be fresh, clean, and free from salts, alkali, organic matter, and other impurities.
 4. Concrete shall have a minimum 3000 psi ultimate twenty-eight day compressive strength and a maximum three (3) inch slump.

PART 3 - EXECUTION

3.01. GENERAL:
A. This section includes the installation of the complete electrical system.

3.02. ELECTRICAL SERVICE:
A. General: Arrange with local electric Utility Company for service to be brought to the building, and for installation of meter. Provide all material and labor not supplied by Utility Company so as to produce a complete installation meeting the Utility regulations.

B. Service requirements: It is the responsibility of this Section, prior to bid, to reaffirm with the Utility Companies involved, that locations, arrangement, Power Company voltage, phase, metering required, and connections to utility service are in accordance with their regulations and requirements. If their requirements are at variance with these drawings and specifications, contract price shall include an additional cost necessary to meet those regulations without extra cost to Owner after bids are accepted.

C. Notify Architect of any changes required before proceeding with work.

D. Fees and deposits:
 1. The Electrical Contractor shall be responsible for verification and payment of all utility fees associated with installation of the electrical service.
 2. The Owner shall pay the cost of establishing an electrical service account and permanent meter deposit.

E. Metering: Obtain metering equipment from Utility Company and install in compliance with the Utility Company's requirements. The Electrical Contractor shall provide and install all necessary metering raceways, fittings, supports, connectors and ground conductor necessary for a complete installation. Provide 100# pull wire in all metering conduits.
F. Main Service Equipment: Provide UL approved service entrance components as indicated on drawings or specified herein.

G. Provide a full size copy of the AS-BUILT Power Riser Diagram framed behind plexiglass screwed to the wall near service entrance in main electrical room.

H. Service lateral or feeder: Extend lateral or feeder of the size shown on drawings from service equipment to the point of service as indicated (verify exact location with Utility Company).
 1. For Overhead Service, provide and install service entrance fitting on conduit and leave sufficient slack conductor for connection to utility feeder 10’ above finish grade, 12’ above drive and 18’ above street.
 2. For Underground Service, provide and install underground conduit to utility riser, as directed by Utility Company. Conduit shall be of size and quantity as indicated on drawings. Provide 480# polypropylene pull line in each empty conduit.
 3. For Underground Service, provide and install transformer pad, primary underground conduit to utility riser as directed by Utility Company, underground secondary conduit, and secondary conductors. Conduit shall be of size and quantity as indicated on drawings. Provide spare 4” conduit in transformer pad extending 2’ beyond edge of pad with PVC cap. Provide 480# polypropylene pull line in each empty conduit.
 4. On service transformers with multiple taps, it shall be the responsibility of this section to coordinate tap selection with the electric utility to insure the proper nominal voltage.

3.03. GROUNDING:

A. Bond the neutral conductor and various conductive materials in the building per NEC Article 250.

B. Grounding Electrode System: A bare copper grounding conductor shall be bonded to grounding electrodes as specified below. This conductor shall serve as ground for system neutral and for building equipment bonding. Where conductor is #6, or smaller, or is subject to injury, it shall be run in conduit, Schedule 80 PVC or Rigid Galvanized to which the conductor shall be bonded at both ends.
 1. Grounding electrodes shall be as follows:
 a. Cold water piping, if metal and in direct contact with the earth for 10 feet or more, at the point of entry into the building. Grounding electrode shall be attached with UL approved bronze clamp.
 b. Building structural steel, if present and accessible.
 c. Grounding electrode shall be attached with exothermic weld connector.
 d. Foundation reinforcing bar system. Coordinate with General Contractor to provide turned up re-bar (sleeved) near service point for attachment of grounding electrode above grade. Grounding electrode shall be attached with UL approved bronze clamp or exothermic weld connector.
 e. Driven ground rod(s).
 1) Three 3/4” x 10’ copper weld rods shall be driven into the ground at the lowest point adjacent to the building, spaced a minimum of 10’ apart.
 2) Ground rods shall be driven to 12” below grade.
 3) The grounding electrode conductor shall be attached to the rod(s) with UL approved bronze clamp or exothermic weld connector.
 f. Existing grounding electrode system. If an existing electrical service is in place, it must be bonded to the new grounding electrode system.

C. Connections to grounding rods, building structure, counterpoise, and conductor junctions shall be made by exothermic weld unless specifically noted otherwise.

D. Electric system (neutral) ground: The current carrying neutral leg of the wiring system shall be of insulated conductor, and shall be connected to the grounding electrode conductor only via the neutral connection at the service equipment. Each branch circuit or multi-outlet branch circuit shall be provided with a dedicated neutral conductor.

E. Equipment grounding conductors:
 1. An equipment grounding conductor (copper with green insulation except where bare copper is used) shall be provided in all wiring raceways.
2. Sizes shall be in accordance with NEC 250.

3. The equipment grounding conductor shall originate in the same panelboard, panelboard section, as the circuit conductors.

4. The equipment grounding conductor bonding the sections of multi-section panelboards shall be sized per NEC 250.

5. The equipment grounding conductor is not included in number of branch circuit conductors indicated on the drawings.

F. Grounding electrode resistance shall be less than 15 ohms. The resistance of the grounding electrode shall be tested by the Fall of Potential Method.

G. Each grounding conductors at the service entrance ground bus bar shall be provided with a brass round identifying tag. Tag shall indicate where ground wire is terminated.

3.04. EXCAVATION, CUTTING AND BACKFILLING:

A. Provide cutting and patching, under the supervision of the General Contractor, as required for the work in Section 16.

B. Locate all existing below grade and/or below floor utilities prior to beginning any site excavation or cutting of existing floor slabs. The Contractor shall repair any damage to existing utilities or systems.

C. Saw cut existing concrete slabs and asphalt paving.

D. Trenching:
 1. Dig trenches true to line, with a flat, even bottom.
 2. Width of the trench shall provide not less than 3 inches clearance from the conduit to each side of the trench.
 3. Insure that foundation walls and footings and adjacent load bearing soils are not disturbed in any way.
 4. Conduits shall be installed below footings where possible. Where a line passes under a footing, make crossing with the smallest possible trench to accommodate the conduits/sleeves.
 5. Where a line must pass adjacent to and blow the bottom of a column footing, or the corner of a continuous footing, backfill the trench with concrete up to the level of the footing bottom, for a distance away from the footing equal to the depth of the fill.
 6. Keep excavation free from water, by pumping if necessary.
 7. Where rock, soft spots, or sharp-edged materials are encountered, excavate the bottom for an additional 3 inches, fill and tamp level to proper elevation with sand or earth free from particles that would be retained on a 1/4 inch sieve.
 8. Remove and relocate existing obstructions as directed.
 9. The Contractor shall be responsible for the repair and/or replacement of any damage to existing utilities, structure, or finishes.
 10. Coordinate work with other trades as work progresses so cutting and patching will be minimal.
 11. Refer to Section “Earthwork” for shoring, sub-soil assumptions and data, work around trees, surplus earth, etc.

E. See Section 16100, “Conduit Installation, Below grade and below slab conduit installation”, for installation of conduits in trenches.

F. Backfilling:
 1. Immediately after inspection, cover conduits with 3” of compacted sand or earth free from particles that would be retained on a 1/4 inch sieve. Do not to disturb the alignment or joints of the conduits.
 2. Carefully backfill with 4” of earth free from clods, brick, etc., firmly puddling and tamping.
 3. Thereafter, puddle and tamp every vertical 4” for hand tamping or 8” for heavy duty mechanical tamping.
 4. Backfill shall meet the compaction requirements set forth in Division 2.
 5. Backfilling Beneath Slabs and Pavement: Trenches beneath future slabs or pavement, including but not limited to buildings, drives, parking areas, sidewalks, playground surfaces, and equipment pads, shall be backfilled, from 3” above top of conduits to final
grade, with crushed aggregate, AHD 825, type B, compacted in 4” layers to 100% ASTM 698.
6. Install marking tape above conduits at 12 inches below grade.

3.05. SLEEVES, INSERTS, AND SUPPORTS:
A. Provide and install No. 16 gauge galvanized steel or iron sleeves in all walls, floors, ceilings, and partitions. Sleeves shall have no more than 1/2” clearance around pipes and insulation.
B. The contractor shall furnish to other responsible trades all sleeves, inserts, anchors and other required items which are to be built in by other trades for securing of all hangers or other supports by the Contractor.
C. The contractor shall assume all responsibility for the placing and sizing of all sleeves, inserts, etc., and shall either directly supervise or give explicit instructions to other trades for their installation.
D. The contractor shall seal all conduits through floors, smoke partitions, and floor partitions, with a sealant approved for the application.
E. All sleeves through sound barrier walls and partitions shall be sealed with mineral wool.
F. Through the floor conduit penetrations shall be sealed watertight.
G. Furnish and install steel angles and channels as required for mounting and bracing heavy equipment and conduits. Steel shall be securely bolted or welded to structure and equipment bolted to the steel framework. Obtain the approval of the Architect prior to welding.

3.06. BELOW GRADE THRU WALL WATER SEALS:
A. Each conduit penetrating exterior, below grade, cast concrete walls shall have the annular space around the conduit sealed with an approved Thru Wall Water Seal System.
B. Where the system includes water seal thru wall sleeves, the Electrical shall provide properly sized sleeves to the contractor responsible for constructing the walls and shall be responsible for the proper location of each sleeve.
C. Where openings are to be core drilled, the Electrical Contractor shall be responsible for the core drilling and for coordinating proper sizing and location of each opening.

3.07. FIRE STOPPING:
A. The Electrical Contractor shall be responsible for firestopping of all penetrations of fire rated partitions made by any and all lighting, power, and auxiliary circuiting, sleeves and/or equipment.
B. The Electrical Contractor shall submit manufacturers’ UL System drawings for the systems to be utilized. The systems shall be compatible with the partition ratings as indicated on the Architectural drawings and in accordance with details on the Electrical drawings.
C. Penetrations of fire rated partitions shall be sealed with an approved fire sealant resulting in the completed penetration having the same fire rating as the partition.
D. The installation shall be in accordance with the manufacturer’s UL system detail and installation instructions to attain the required fire partition rating.
E. Empty sleeves through 1 and 2 hour rated partitions shall be plugged with mineral wool.
F. Sleeves through 4 hour rated partitions shall be plugged with mineral wool and fire stopping material.

3.08. ROOF PENETRATIONS:
A. Furnish roof flashing for all equipment, installed under Section 16, which penetrates through the roof. Flashing shall be approved by the Architect prior to installation.

3.09. CONDUIT INSTALLATION:
A. Conduits shall be as follows:
 1. Overhead Service Entrance - Rigid Galvanized Steel (RGS) Conduit or IMC.
 2. Underground Service Laterals: Schedule 40 rigid PVC in horizontal runs with rigid galvanized steel elbows turning up to vertical RGS.
3. Where subject to moisture or mechanical injury - RGS conduit.
4. ALL conduits exposed to moisture or subject to mechanical damage shall be RGS. Where conduit exits building, the changeover from EMT to rigid shall be inside exterior wall.
5. In open shop and industrial installations RGS shall be run to 10’ A.F.F.
6. All conduit exposed on the outside of the building envelope shall be Rigid Galvanized Steel (RGS) conduit. This includes all conduits on and/or under canopies or awnings.
7. In concrete or solid masonry – RGS conduit
8. Above furred spaces or in cells of hollow masonry - EMT
9. Concealed inside drywall construction walls and above lay-in ceilings – EMT.
10. Exposed conduits:
 a. Conduits installed exposed in shop, warehouse, and manufacturing areas shall be RGS up to 12’ A.F.F. Conduits in such spaces above 12’ A.F.F. may be EMT unless indicated otherwise on the drawings.
 b. Exposed indoors in non-hazardous unfinished areas not subject to physical damage - EMT
 c. Exposed in kitchen and dishwashing areas: Rigid aluminum.
11. Branch circuits in slab (3/4") - PVC. Turn up through slab with RGS ells - no exceptions. Extend rigid turn-ups 2" minimum above finish floor level.
12. Circuits beneath building vapor barrier - PVC. Turn up through slab with RGS ells - no exceptions. All elbows 45° and greater shall be RGS. Extend RGS turn-ups 2" minimum above finish floor level.
13. Below Grade – PVC with RGS, or rigid aluminum where applicable, elbows turning up to vertical. All below grade elbows 45° and greater shall be RGS.
14. Motor, HVAC equipment, and vibrating equipment connections - flexible metal conduit, liquid tight flexible metal conduit outdoors, in kitchen and dishwashing area, or in other wet areas. Liquidtight flexible nonmetallic conduit shall be used only where specifically indicated.
15. IMC may be used where RGS is indicated.

B. Conduit sizes:
1. Unless specifically indicated otherwise herein or on the drawings, the minimum conduit size shall be 3/4”.
 a. All conduits installed below grade or below slab shall be ¾” minimum.
 b. The minimum size for flexible lighting fixture “whips” shall be 3/8” and the maximum length shall be 6 feet. Lighting fixture “whips” shall be defined as flexible conduits with conductors feeding one or more recessed lighting fixtures installed in suspended, lay-in, acoustical ceiling systems from a single junction box.
 c. ½” conduit may be for final connections to equipment or fixtures where conduit is less than three (3) feet in length and is extended from a junction box or from a ¾” conduit stub up.
2. Conduits shall be sized in accordance with the National Electrical Code as adopted by the local authority having jurisdiction or as amended to date, except where a larger size is indicated on the drawings or specified herein.

C. Layout:
1. Generally follow the conduit layout shown on the drawings. However, the layout is diagrammatic only and must be adjusted for structural conditions, built-in equipment and other factors. Offsets are not indicated and must be furnished as required.
2. Install all conduits concealed except in equipment rooms and where exposed runs are specifically indicated.
3. Install conduit runs to avoid proximity to steam or hot water pipes. In no place shall a conduit be run within 6” of such pipes except where crossings are unavoidable, then conduit shall be kept at least 1” from the covering of the pipe crossed.
4. Eliminate trapped runs insofar as possible.
5. Do not chase new work, but instead build in conduit as work progresses.
6. Do not run conduit in cavity of exterior walls.
7. Run concealed conduits in direct line with long sweep bends and offsets where practicable.
8. Install exposed conduit with runs parallel or perpendicular to walls, structural members, or intersections of vertical planes and ceilings, with right-angle turns consisting of cast-metal fittings or symmetrical bends.

9. Where conduits are indicated exposed overhead, runs down to wall outlets shall be concealed in wall.

D. Conduit Installation:

1. Securely fasten conduits to all sheet metal outlets, cabinets, junction and pull boxes with locknuts and bushings, taking care to see that stout mechanical and solid electrical connections are obtained.

2. All conduits shall have bushings with smooth beveled throats installed at both ends prior to installing conductors. Split bushings around conductors shall be taken to indicate that the conductors were pulled into conduit without the proper bushings installed and a basis for requiring the replacing of the conductors.

3. Conduits entering service enclosures (panelboards, disconnect switches, switchboards, motor control centers, etc. used as service entrance equipment) shall be provided with specification grade, insulating, grounding type bushings. Grounding bushing shall be bonded together and bonded to the service grounding buss.

4. Support:
 a. Raceways shall be securely and rigidly supported to the building structure in a neat and workmanlike manner, and wherever possible, parallel runs or horizontal conduit shall be grouped together on adjustable trapeze hangers.
 b. Support shall be provided at appropriate intervals not exceeding eight (8) feet with straps, hangers, and brackets specifically designed for the application.
 c. Channels shall be 1 inch for 18-inch wide trapeze, 1-3/8 inch for 24 to 30 inch, and 1-5/8 inch for over 30 inch wide trapeze.
 d. Perforated steel straphangers, “butterfly clips”, or tie-wire supports are not acceptable.
 e. Conduits shall not be supported from ceiling support wires.
 f. Conduits installed along wall surfaces shall be supported with galvanized steel brackets specifically designed for conduits and sized for the conduit used.
 g. PVC conduits shall be supported per the NEC with PVC or stainless clamps and stainless steel hardware.
 h. Attach to supporting devices with screws, bolts, expansion sleeves or other workmanlike means appropriate to the surface.
 i. In stud walls, anchors shall be completely rattle proof.
 j. For conduits in damp and wet locations, use stainless steel clamps and stand-offs, or galvanized malleable or cast iron clamps and spacers.
 k. All mounting hardware for aluminum conduit shall be stainless steel.
 l. Surface mounted conduits installed in kitchen and dishwashing areas shall be supported off walls approximately 3/16”.

5. Thread rigid conduits so that the ends meet in couplings; cut ends square, ream smooth and draw up tight.

6. All field cut threads shall be cleaned with a solvent such as mineral spirits and painted with two coats of galvanize primer.

7. Cap conduit ends to keep out water and trash during construction.

8. Field made bends:
 a. Avoid field-made bends where possible, but where necessary, use a proper hickey or conduit-bending machine.
 b. Field made bends in PVC conduit shall be made with a heated PVC conduit bender.
 c. Make no bends with radius less than six times the conduit diameter, nor more than 90 degrees.

9. Make changes in direction with pull boxes, symmetrical bends and/or cast-metal fittings.

10. Total bends in any conduit run shall not exceed the equivalent of four, quarter (90°) bends for a total of 360°, per NEC, between pull boxes.

11. Replace any crushed or deformed conduits.

12. Conduits passing through roofs shall be in place before roof is installed.
13. Conduits installed in concrete/grout filled CMU walls shall be Rigid steel or IMC conduits installed field wrapped with 0.010 inch thick pipe-wrapping plastic tape applied with a 50 percent overlay. Painted on coating shall not be acceptable.

14. Where conduits pass through or across building expansion joints, provide hot-dipped galvanized expansion fittings with bonding jumpers.

15. Insure that all penetrations of firewalls are sealed per NEC and IBCC.

16. Right and left couplings shall not be used; conduit couplings of the Erikson type shall be used at location requiring such joints.

17. Paint all conduits exposed in finished spaces. Paint shall consist of one coat of zinc rich primer plus two top coats of water-based latex paint, color to match adjacent finishes. Verify colors and paint system with Architect.

18. All conduit runs entering the building from outdoors shall be sealed against moisture migration and condensation by filling with insulating type foam.

19. All conduits passing through walls of coolers or freezers shall have seal fitting installed on the outside of the cooler/freezer wall and within 3” of the wall. Fitting shall be sealed per manufacturer’s recommendations.

20. Install telephone, data, intercom, and signal system raceways, 2-inch trade size and smaller, in maximum lengths of 150 feet and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements, in addition to requirements above.

E. Below grade and below slab conduit installation:
 1. See Section 16100, “Excavation, Cutting, and Backfilling” for trenching and backfilling requirements.
 2. Rigid steel or IMC conduits installed below slab-on-grade or in the earth shall be field wrapped with 0.010 inch thick pipe-wrapping plastic tape applied with a 50 percent overlay, or shall have a factory-applied polyvinyl chloride, plastic resin, or epoxy coating system. Painted on coatings shall not be acceptable. Wrap shall extend a minimum of 1” above slabs or 3” above finished grade where there is no slab. Alternate methods must approved by Engineer prior to bids.
 3. Top of the conduit shall be not less than 30 inches below grade.
 4. Run conduit in straight lines except where a change of direction is necessary.
 5. Conduits stubbed up from below grade or slab into exterior walls shall be turned toward the interior of the building below slab fill perpendicular to the wall. Conduits shall not be turned out toward the exterior unless specifically indicated to do so.
 6. Placing of conduits below slab on grade:
 a. Conduits 1-1/4” and larger shall be installed a minimum of 12” below the bottom of slab in the clay/sand fill below any gravel fill material.
 b. Conduits 1” and smaller may be installed in the porous/gravel fill below the vapor barrier.
 7. Multiple Conduits:
 a. Separate multiple conduits by a minimum distance of 2-1/2 inches horizontally and 3 inches vertically, except that light and power conduits shall be separated from control, signal, and telephone conduits by a minimum distance of 3 inches horizontally and vertically.
 b. Where multiple layers of conduits are to be placed in a trench, each layer shall be placed in the trench, straight and parallel, clear fill material (see Excavation, Cutting, and Backfilling) placed and tamped in place to provide the specified spacing, and each subsequent layer placed in the same manner.
 c. Stagger the joints of the conduits by rows and layers to strengthen the conduit assembly.
 d. Conduits shall not be placed haphazardly in the trench.
 8. Where conduits pass through footings or foundation walls:
 a. Conduits roughed in beneath slab shall exit the foundation perpendicular to the building spaced approximately 3” apart. Conduits shall be arranged in a single horizontal row where practical.
b. Secure approval from the Architect and Structural Engineer prior to penetrating any footing or foundation wall.

c. Schedule 40 PVC sleeves shall be cast in the footings or foundation wall for the conduits to pass through.

d. Multiple sleeves shall have 3” clearance, vertically and horizontally, between the sleeves unless directed otherwise by the Architect and/or Structural Engineer.

9. Where PVC conduit is installed below grade a PVC to rigid metallic conduit coupling shall be installed in the horizontal run and a rigid galvanized steel conduit elbow installed to turn up to above grade. Where above grade conduits are indicated to be rigid aluminum the elbow turning up to vertical shall be rigid aluminum.

10. Rigid aluminum conduit shall be wrapped same as RGS through concrete from 2” each side of the concrete.

11. Rigid galvanized conduit shall extend a minimum of 6” above the finished floor level.

12. In hazardous areas the coupling shall be below grade and a single section of conduit installed up to 18” A.F.F. to accept the required seal fitting.

13. Wiring shall be extended in rigid threaded conduit to equipment, except that where required, flexible conduit may be used from 6 inches above the floor to the served equipment.

 a. Where adequate support cannot be obtained by wiring to reinforcing steel, obtain support with solid iron stakes (which may be driven through membrane) cut off flush with slab after pouring.

 b. At turn-ups of adjacent runs of exposed conduit, obtain alignment by wiring members to a temporary horizontal member.

15. Empty or spare conduit stub-ups shall be capped with a threaded cap.

16. Encasement Under Roads, Structures, and at other locations indicated on the drawings:
 a. Under roads, paved areas, railroad tracks, and other locations indicated on the plans install conduits in concrete encasement of rectangular cross-section providing a minimum of 3 inch concrete cover around ducts.

 c. Provide plastic duct spacers that interlock vertically and horizontally. Spacer assemblies shall consist of base spacers, intermediate spacers, and top spacers to provide a completely enclosed and locked-in conduit assembly.

 d. Install #4 rebar at each corner of the encasement and at not more than 18” on center vertically and horizontally on the sides of the encasement. #4 rebar hoops shall be installed at not more than 18” on center along the length of the encasement.

 e. Concrete encasement shall extend at least 5 feet beyond the edges of paved areas and roads, and 12 feet beyond the rails on each side of railroad tracks.

17. Conduits to be installed under existing paved areas, which are not to be disturbed, and under roads and railroad tracks, shall be installed through a zinc coated, rigid steel, sleeve, jacked into place.

18. Conduits installed between handholes, manholes or other accessible areas shall have a minimum slope of 3 inches in each 100 feet away from buildings and toward manholes and other necessary drainage points.

19. The contractor shall provide properly rated and sized junction and pull boxes as required on all underground conduit runs 150 feet and greater so as to minimize pulling tensions on cables to be installed in conduits. In no case shall pull or junction boxes be further than 300 feet apart. Provide pulling tension calculations on all underground runs over 200 feet as required in Paragraph 1.09 Submittals.

F. Conduit Installation in concrete slabs:

1. Conduit installed in concrete slabs shall be rigid steel or IMC. Rigid steel or IMC conduits installed in slabs-on-grade shall be field wrapped with 0.010 inch thick pipe-wrapping plastic tape applied with a 50 percent overlay, or shall have a factory-applied polyvinyl chloride, plastic resin, or epoxy coating system. Painted on coatings shall not be acceptable.

2. At slabs on grade, conduit, 3/4” maximum, may be run in the slab; larger conduit shall be run below slab.
3. Where adequate support cannot be obtained by wiring to reinforcing steel, obtain support with solid iron stakes (which may be driven through membrane) cut off flush with slab after pouring.

4. At turn-ups of adjacent runs of exposed conduit, obtain alignment by wiring members to a temporary horizontal member.

G. Flexible conduit:
 1. At motor or equipment connections:
 a. The maximum length allowable for flexible conduit shall be 36 inches except at lighting fixtures.
 b. Flexible conduit installed outdoors shall be installed so as to provide an 8 inch minimum drip loop as measured from the lowest end of the conduit.
 2. At lighting fixture connections provide flexible steel conduit by one of the manufacturers named for rigid.
 a. Maximum length allowable shall be 72 inches.
 b. Support flexible conduit such that it does not contact the ceiling system, ductwork, or other equipment above the ceiling. The conduit shall not be attached to a ceiling or ceiling support system.
 c. All fixture whips shall be supported within 12” of outlet/junction boxes with single hole clamps.

H. Empty conduit:
 1. Install a #14 galvanized fish wire or polypropylene pull cord with 14-inch free ends in all empty power and/or auxiliary conduits.
 2. All conduits indicated to be terminated above the ceiling shall have an elbow turned out above the ceiling and shall be terminated with an insulating bushing.
 3. Empty conduits stubbed out of buildings below grade:
 a. Empty conduits stubbed out of buildings below grade shall extend 5 feet outside of the building foundation.
 b. Install a 12”x12”x 6” concrete marker at grade, above the end of the conduits, with “ELEC” inscribed on top.
 f. Note on as-built drawings the exact location where empty conduit(s) are stubbed out below grade to the building exterior. Indicate conduit sizes and number of each size.
 g. The contractor shall provide properly rated and sized junction and pull boxes as required on all underground conduit runs 150 feet and greater. In no case shall pull or junction boxes be further than 200 feet apart.

I. Conduit entries into enclosures, panelboards, and wiring troughs:
 1. Layout conduit entries carefully to allow clearances for the number and sizes of conduits, electrical equipment, and future expansion.
 2. In sheet metal equipment use Greenlee Knock-Out punch, or equal, to cut holes for conduit installation. Do not drill holes, or cut holes out with snips or torch.
 3. In cast enclosures and boxes drill conduit openings with correct size drill for tight fit.

J. All junction box covers above the ceiling shall be labeled to which circuits or systems they contain.

3.10. CONDUIT BODIES:
 A. Conduit bodies shall be sized in accordance with NEC 370, and 373.
 1. Conduit bodies for conductor sizes AWG #4 and larger shall be mogul type bodies sized in accordance with NEC 370-28.
 2. Conduit bodies for conductor sizes AWG #6 and smaller shall be sized in accordance with NEC 370-16(c).

3.11. JUNCTION AND PULL BOXES:
 A. Junction and pull boxes shall be sized per NEC to accommodate the installed number and size of conductors and conduits.
 B. Boxes shall be securely fastened in place.
C. Boxes serving lighting fixtures installed in accessible, suspended ceilings:
 1. Provide number of boxes as required to maintain fixture whips within the 6’ maximum length.
 2. Generally attach to underside of structure above, in accessible location, to accommodate a maximum 6’ flexible conduit connection to each fixture or fixture run.
 3. Where the structure above is more than 18” above the ceiling the boxes shall be supported within 18 inches of the ceiling with all thread rod and/or strut.
D. Install galvanized steel utility box plates, by box manufacturer, at exposed conduit fittings or boxes.
E. All junction box covers above the ceiling shall be labeled to which circuits or systems they contain.

3.12. WIRE AND CABLE INSTALLATION:
A. No conductor shall be smaller than #12 except where so designated on the drawings or specified elsewhere.
B. Multiwire lighting branch circuits shall be used where indicated.
C. Wiring devices shall be connected such that each device can be removed without interrupting the neutral or equipment grounding conductors serving other outlets on the same circuit(s).
D. Joints and splices in wire shall be made with solderless connectors, and covered so that insulation is equal to conductor insulation. Wire nuts shall not be used for conductor #8 and larger.
E. No splices shall be pulled into conduit.
F. Both conductors and conduit shall be continuous from outlet to outlet.
G. No conductor shall be pulled into the conduit until the conduit is cleaned of all foreign matter.
H. When installing parallel conductors, it is mandatory that all conductors making up the feeder be exactly the same length, the same size, and type of conductor with the same insulation. Each group of conductors making up a phase or neutral must be bonded together at both ends in an approved manner.
I. MC cable or Romex cable will not be accepted unless specifically called for on drawings.
J. Wiring thru light fixtures and receptacles will not be accepted.

3.13. CIRCUITS AND BRANCH CIRCUITS:
A. Outlets shall be connected to branch circuits as indicated on the drawings by circuit number adjacent to outlet symbols, and no more outlets than are indicated shall be connected to a circuit.

3.14. WIRE JOINTS:
A. Except for motor circuits, wire joints for #8 and smaller wire shall be made with twist on connectors.
B. Wire joints and splices for motor circuits, for conductors #6 and larger, and for smaller conductors where other connectors are not rated for the number of conductors involved shall be made with split bolt connectors rated for the applicable conductor size, number of conductors, and conductor material.
 1. Properly tape and insulate all joints to attain the same insulation rating as the cable insulation.
 2. Splices for #6 through #1 shall have a minimum of two (2) layers of rubber tape covered by a minimum of three (3) layers of electrical tape.
 3. Splices for #1/0 and larger conductors shall have a minimum of two (2) layers of electrical filler tape covered by a minimum of three (3) layers of electrical tape.
C. Splices in control conductors shall be avoided as much as possible. Stranded control conductor up to #12 may be connected or spliced with hand crimped type compression connectors. The connectors shall be of the proper size for the conductors being connected.
D. Splices and joints made with mechanical/hydraulic type compression connectors:
1. Connections and splices shall be made with connectors rated for the applicable conductor size and conductor material.
2. Dies used shall leave the die number embossed in the connector. The Contractor shall provide the Engineer with the Manufacturer's connector and die chart prior to final inspection.

E. Taps and splices in auxiliary gutters/troughs shall be made with insulated multi-tap connectors.
F. Wire joints and splices made below grade shall be made with UL listed waterproof connectors, wire nuts, or splice kits.
G. All joints and splices shall be made in junction boxes, wiring troughs, or conduit bodies sized per NEC.
H. All connections to switchboards, panelboards, transformers, generators, ATS, or any other type electrical distribution type equipment shall be compression type fittings. Mechanical fittings will not be accepted in these applications.

3.15. STRUT SYSTEM FOR SUPPORT OF ELECTRICAL EQUIPMENT:
A. Strut Systems: Strut shall be utilized to rack exposed piping vertically or horizontally on walls and across slabs (where applicable). Strut may be utilized to support piping above ceilings, for support of equipment, and elsewhere as deemed appropriate.
 1. Strut in conditioned spaces and above accessible ceilings shall be electro-galvanized.
 2. Strut installed outdoors, in mechanical rooms, and in other unconditioned spaces shall be hot-dipped galvanized.
 3. Strut installed in waste water treatment facilities, kitchens, dishwashing spaces, and labs shall be stainless steel.
 4. Strut fittings and hardware, including anchors, shall be same material as strut.
 5. Saw cut strut square, 6” minimum lengths. Strut on continuous runs of pipe shall be same length. File or grind burrs from saw cuts.
 6. After installation, electro-galvanized and hot-dipped galvanized strut shall be painted with two coats of zinc primer.

3.16. OUTLET BOX INSTALLATION:
A. General: The drawings indicate approximate locations only; determine the exact location at the building in view of all structural and architectural conditions. Obtain Architect's verification of final locations.
B. Outlet boxes shall be sized per NEC to accommodate the installed number and size of conductors, wiring devices, and conduits.
C. Ceiling and Wall Bracket Outlets: 4” octagonal boxes with plaster rings appropriate for finish surface.
D. Typical boxes (for switches, receptacles and auxiliary systems): 4” square boxes ganged as required. Furnish with 3/4” plaster rings where employed in plaster, 1” tile covers where used in ceramic tile, 1” plaster rings where set in exposed concrete, and otherwise appropriate for surface and construction.
E. Boxes in Exposed (or Thin-Coat Plastered) Masonry: Where conduit connections permit, employ solid flush-type, square-cornered, masonry boxes with turned-in device holders; otherwise equip typical box with 1-1/2” square-cut tile cover.
F. Boxes used with Exposed Conduit: 4” square utility boxes.
G. Exterior Boxes: Cast-metal boxes, Crouse-Hinds Type FS or FD as appropriate. Make weatherproof with gasketed covers. Equal products by Appleton, Killark, O-Z/Gedney, or approved equal will be accepted.
H. Boxes used with Recessed Lighting Fixtures in suspended acoustical tile ceilings:
 1. Provide a 4” square box with blank cover adjacent to each fixture or fixture group.
 2. Install a flexible metal conduit fixture “whip” from the box to the fixtures. The “whip” shall not be longer than 72”.
 3. Attach the box to the underside of the structure above, in an accessible location, not more than 18” above the lay-in ceiling.
4. Where structure is more than 18” above the ceiling, the boxes shall be supported from all-thread rods, strut, or a combination of rod and strut.

I. Boxes in Dry Wall Construction:
 1. Outlet boxes shall be securely fastened in place.
 2. Outlet boxes installed in metal stud construction shall be supported by brackets screwed to studs. Clip on brackets shall not be accepted.
 a. Where a single outlet box is installed adjacent to a stud, brackets may attach to a single stud with a brace against the back of the opposite wall. Use a bracket equal to Caddy Fasteners “H” Series.
 b. Where outlets do not fall next to a stud or where more than one outlet is installed between studs use a metal bracket attached to both studs. Brackets shall be equal to Caddy Fasteners “SGB”, “TSGB”, or “RBS” series brackets.
 c. Outlet boxes three gangs and wider shall be supported with support member screwed to the two adjacent studs. Brackets equal to Caddy Fasteners SGB or TSGB brackets may be used.

J. Sectional type switch boxes at least 2-1/2” deep may be used instead of typical box (but not where dry wall finish is applied over masonry back-up and not where multi- gang devices occur).

K. Outlets in unfinished masonry walls may be slightly adjusted upward or downward to suit masonry courses, provided outlets are mounted at uniform heights throughout the installation.

L. Coordinate installation of outlet boxes in masonry walls with the masonry contractor to insure that boxes are flush with face of wall and grouted smooth around boxes such that covers, fixtures or devices install flush on face of wall.

M. Where outlets at different levels are shown adjacent, install in one vertical line where possible. Avoid conflict with wainscot caps, splash backs and upper cabinets by adjusting height slightly up or down as directed.

N. Back to back boxes shall be staggered with at least 3 inches between boxes.

O. Back to back boxes in fire rated partitions shall have a minimum of 24” horizontal and/or vertical separation between them.

P. Backs of boxes three gang and larger installed in fire rated partitions shall be wrapped with self adhesive fire stopping tape.

Q. Locate switch outlets on the lock side of doors and so that the first switch in a single or gang installation is approximately 6” to 10” from the doorjamb. Verify door swings on Architectural Drawings.

R. Coordinate carefully with appropriate trades the size and orientation (vertical, horizontal) of outlet boxes for thermostats, data outlets, fire alarm equipment, security equipment, and other control and communications outlets.

S. Mounting Heights:
 Confirm all mounting height with local codes and authorities prior to bid and adjust as required:
 Switches, generally 48” A.F.F. to top of outlet
 Safety switches Center of Switch 48” A.F.F. or as required.
 Receptacles, generally 16” A.F.F. to bottom of outlet
 Receptacles over counters Bottom of outlet 6” above countertops or 2” above backsplashes
 Wall mounted exit and emergency lights Bottom of fixture 12’ A.F.F.
 Thermostat Top of outlet 48” A.F.F. or as noted by mechanical drawings.
 Electric Water Coolers Coordinate location with plumbing contractor to locate the receptacle(s) concealed within the EWC enclosure per manufacturer’s installation instructions.

T. Install blank coverplates on all unused power and auxiliary outlet boxes. Blank coverplates shall match other cover plates installed in the facility.
U. Furnish blank plates, matching those on the other outlets in the same area, on TV outlets and other outlets installed for future use.

3.17. WIRING DEVICES:
A. Install wall devices vertically unless otherwise noted, so that all devices of any given height will align exactly.
B. Where boxes are not flush or square with the finished wall surface install wiring devices utilizing a leveler and retainer equal to Caddy #RLC or Steel City #SSF-SR.
C. Plates shall be plumb and true with all four edges contacting wall surface.
D. Mount receptacles with grounding terminals down.
E. Do not install devices until plastering or other type wall covering has been completed; install ahead of painting work, but protect from paint spatter.
F. Use screw terminal connections only.
G. Do not gang dimmer switches with toggle switches.
H. Each single or multi outlet receptacle, other than straight blade, 15 or 20 amp, 120 volts, NEMA 5-15R or NEMA 5-20R, shall be provided with matching cord plugs and a minimum of 8 feet of Type SOW cable matching the receptacle size and configuration.
I. Pin and sleeve plugs for food service equipment shall be provided with a Type SOW cable.

3.18. OCCUPANCY SENSORS AND ASSOCIATED DEVICES FOR LIGHTING CONTROL:
A. Occupancy sensors and associated devices and circuiting shall be installed in strict accordance with the manufacturer’s instructions.
B. Wall, corner mounted sensors shall be mounted as close to the ceiling as possible on the manufacturer’s corner mounting bracket.
C. Power packs shall be mounted above the ceiling. Power packs shall be installed utilizing two (2) 4” x 4” x 2-1/8” deep boxes joined together using the nipple on the powerpack in accordance with the manufacturer’s instructions. One of the boxes shall contain the power pack and control wiring and the other shall contain the power wiring.
D. All control and power circuiting shall be in EMT conduit. Where the devices are not equipped with conduit connections the conduit shall be brought up as close as possible to the device and terminated with insulating bushings.

3.19. ELECTRICALLY POWERED EQUIPMENT AND CONTROLS:
A. Provide and install power circuits for all electrically powered equipment and controls.
B. Heating, Ventilating, and Air Conditioning Control Wiring and Conduit:
 1. The electrical contractor shall be responsible for installing outlet boxes for flush mounted HVAC system thermostats in dry wall or masonry wall construction and, where called for on the plans, for surface mounted metallic raceway in finished areas. Extend ¾” conduit from the outlet to above nearest accessible ceiling and terminate horizontally. Refer to the Mechanical/HVAC plans for thermostat locations and coordinate exact type outlet required and orientation with the Mechanical/HVAC contractor.
 2. The Mechanical Contractor shall be responsible for the installation of all outlets and conduit for surface mounted devices in unfinished areas such as shops, warehouses, industrial facilities, etc.
 3. The mechanical contractor shall furnish and install all low and line voltage control wiring required for the temperature control and/or ventilation systems.
C. Where Fire Alarm system duct mounted smoke detectors and HVAC shut down interface relays are provided, the Electrical contractor shall provide wiring from the smoke detectors to the
HVAC shut down interface relay. All circuiting from the shut down relay to the HVAC controls and/or starters shall be provided and installed by the Mechanical/Controls contractor.

D. The mechanical contractor shall furnish all motor starters for the temperature control and/or ventilation equipment unless otherwise indicated on the electrical plans or elsewhere in these electrical specifications. The electrical contractor shall install all motor starters, except for equipment with factory installed starters, for the temperature control and/or ventilation equipment.

E. Where exhaust fans are supplied with field installed speed controllers, the Electrical Contractor shall provide all necessary circuiting to the fan/speed controller and between the fan and the speed controller.

3.20. DISCONNECTING MEANS:

A. Where required by the National Electrical Code and/or other applicable codes or authorities, or where indicated on the electrical plans, the electrical contractor shall furnish and install an approved disconnecting means for all electrically powered equipment and/or controllers for such equipment whether the disconnecting means is or is not shown on the electrical plans.
 1. The location, rating, and enclosure for the disconnecting means shall be as required by the National Electrical Code and/or other applicable codes or authorities.
 2. Manual motor starters with thermal overload protection may be used in lieu of safety switches for individual motors under 1 horsepower.
 3. Motor rated switches may be used for the disconnecting means when supplied of correct voltage, phase, amperage rating, and enclosure type.
 4. The disconnecting means shall be as manufactured by General Electric, Square D, Cutler Hammer, or Siemens.

B. Where the disconnecting means shown on the electrical plans has a rating greater than the required code rating, the greater rating device shall be installed.

C. An approved horsepower rated fusible safety switch shall be installed where the circuit overcurrent protection does not provide overload protection for the equipment served and where required to meet the equipment's listing requirements.

D. Motor rated switches may be used as service disconnect switches when supplied with a padlockable, handle locking guard.

E. Install an engraved phenolic nameplate on the front of each switch enclosure identifying the equipment served by the safety switch and source of power (i.e., panel name and circuit number). Plates shall be white with black lettering. The plates shall be permanently installed with stainless steel screws or stainless steel rivets.

F. All disconnects installed in public areas or in areas readily accessible to the public shall be lockable and shall be furnished with a brass lock. Provide 10 keys for each lock. All disconnect locks furnished on the project shall be keyed alike.

3.21. LIGHTING FIXTURES:

A. The installation and support of all lighting fixtures shall be the responsibility of the Electrical Contractor.

B. Lay out work as shown, and to provide attractive and efficient arrangement.

C. Install fixtures level, plumb, and true with ceiling and walls, and in alignment with adjacent lighting fixtures.

D. Provide adequate and substantial supports for fixtures in accordance with manufacturers’ directions and as specified herein.

E. A Re-lock system will not be accepted for installing lights.

F. Wire grid mounted luminaries individually to junction boxes with flexible conduit not more than 6 feet in length. Individual flexible connections shall be 2 #14 and 1 #14 ground THHN in 3/8" flexible conduit. Ground wire shall be bonded at each end.

G. Fixtures mounted in inverted “T” grids:
1. For round fixtures or fixtures smaller in size than the ceiling grid, provide a minimum of four wires per fixture located within 4 inches of each corner of the ceiling grid in which the fixture is located. Do not support fixtures by ceiling acoustical panels. Fixtures shall be supported independent of the ceiling system or shall be supported by at least two metal channels spanning the grid system, and secured to, the ceiling tees. One support wire shall be attached to the center of the fixture or to each of the metal channels.

2. Surface mounted fixtures:
 a. Surface mounted fixtures installed on lay-in ceiling systems shall be supported independent of the ceiling system form the building structure with a minimum of two (2) 3/8", minimum, all-thread rods.
 b. Install nuts and washers on inside and outside of the fixture housing to provide a rigid installation.
 c. Provide cross bracing as required such that fixtures have no lateral movement.

H. All stems on fluorescent fixtures shall be installed as follows: (except fixtures with slide grip hangers) first and last stem in row in first knockout from end of fixture. One stem shall be installed between each two fixtures, stem shall center joint, where fixtures join, and attach by use of "jointing plates". Nipples with lock nuts and bushings shall connect all fixtures in continuous rows other than recessed grid type.

I. All suspended lighting fixtures shall be provided with chain or cable sway bracing to keep fixtures from swinging.

J. Fixtures installed in fire rated assemblies shall be tented in accordance with the specified assembly.

K. Means shall be provided to keep insulation 4” minimum away from fixtures not rated for direct contact with insulation.

L. Prior to final inspection clean fixtures and lamps with a soft cloth or sponge and detergent (not soap) solution.

M. All fluorescent, induction or HID lighting fixtures installed in gymnasiums, hangars, high bay or similar use areas shall be equipped with wire guards.

N. All emergency and exit lights designated on drawings shall be provided with an 1100-lumen battery ballast.

O. All light fixtures shall be supported to the structure independent of the ceiling system on two opposite sides. Support wires shall be different color from ceiling support wires. Engage all ceiling mounting clips. If light fixture is not provided with grid support clips, then the contractor will be responsible to support the fixture on all four sides with support wires. See "Typical Lay-In Luminaire Detail" on drawings for further requirements.

3.22. PANELBOARDS:

A. Panelboards shall be installed where shown on the drawings.

B. Ratings and configurations shall be as scheduled and/or indicated on the drawings.

C. The Electrical Contractor shall coordinate installation of equipment in Electrical and Electrical/Mechanical spaces with other trades such that Code required clearances and working space around the electrical equipment is maintained.

D. Conduit termination:
 1. In general use panelboards with blank ends, without knockouts.
 2. Layout conduit entries carefully to allow clearances for drywall or CMU wall thickness, and to accommodate the number and sizes of home run conduits and specified spare conduits.
 3. Use Greenlee Knock-Out punch, or equal, to cut holes in panelboard ends and/or sides for conduit installation. Do not drill holes, or cut holes out with snips or torch.

E. Phase arrangement in panelboards shall be per the NEC, phase A, B, C from front to back, top to bottom, or left to right as viewed from the front.

F. Multi-Section Panelboards:
 1. Sub-feed conductors shall be the same size as the conductors feeding the main section.
 2. Circuiting originating in one section shall not pass through another section.
3. Circuit conductors and grounding conductors shall originate in the same panelboard section.
4. A separate isolated grounding conductor shall be installed from the main section to the sub-feed section(s).
5. Where the panelboard is rated for service entrance equipment the each sub-feed section shall have a separate isolated ground buss fed from the main section ground buss.

G. Labeling:
1. Each panelboard shall have an engraved phenolic plate permanently installed on the front of the panel with the panel name, current rating, and voltage rating.
2. Where there is more than one nominal voltage system the panel shall also have an engraved phenolic plate describing the means of identification used to identify the phase and system of each ungrounded conductor of the system served by the panel.
3. Plates shall be white with black lettering.
4. Panelboard circuit numbers shall be as indicated on the panelboard schedules.

3.23. LIGHTING CONTROL SYSTEM:
A. The Lighting Control System shall be installed in strict accordance with the manufacturer’s instructions and recommendations.
B. System Startup:
 1. The Manufacturer shall provide a factory authorized technician to confirm proper installation and operation of all system components.
C. Training:
 1. The Manufacturer shall provide factory authorized application engineer for a minimum of 8 hours on site to train owner personnel in the operation and programming of the lighting control system.
D. Documentation
 1. Manufacturer shall provide system documentation including:
 a. Lighting Control Panel Schedules
 b. Lighting Channel Schedule
 c. Typical wiring diagrams for each component.
E. Warranty
 1. Manufacturer shall provide a 1-year warranty for all system components. In addition a three(3) year extended warranty shall also be included.

3.24. PHOTOELECTRIC CELLS, TIMERS, AND CONTACTORS FOR LIGHTING CONTROL:
A. Install time clocks where accessible.
B. Install photoelectric cells so that lighting fixtures do not affect the cell.
C. Adjust time clock(s) and photoelectric cells as required for proper operation.

3.25. IDENTIFICATION AND LABELING:
A. Feeder Designation:
 1. Non-ferrous identifying tags or pressure sensitive labels shall be securely fastened to all cables, feeders, and power circuits in vaults, pull boxes, manholes, switch gear and at termination of cables. Tags or labels shall be stamped or printed to correspond with markings on drawings so that feeder or cable number and phase can be readily identified.
 2. Where there is more than one nominal voltage system, each ungrounded system conductor shall be identified by phase and system wherever accessible per NEC. The means of identification shall be permanently posted at each branch-circuit panelboard.
B. Color Coding of Conductors:
 1. The ungrounded (phase) conductors and the grounded (neutral) conductors of each voltage system shall be identified by the following color coding method:
 d. 120/240 Volts, Single Phase, 3 Wire:
 1) Grounded (Neutral) Conductor --- White
 2) Ungrounded (Phase) Conductors --- Red, Black
 2. Green shall be used for equipment grounding conductors only.
3. The insulation color shall be visible for the entire length of wire.

C. Panelboard:
 1. Each Lighting and Power Panelboard shall contain a typed circuit directory listing all circuit breakers and the load served by each.
 2. Panelboard directories shall be typewritten, and shall include adequate descriptions for proper identification of individual circuits. Do not write in or on panelboards.
 3. On Distribution panelboards, provide and install an engraved laminated label for each circuit, indicating circuit’s number and load served.
 4. Each panelboard shall have an engraved phenolic plate permanently installed on the front of the panel with the panel name, current rating, and voltage rating.
 5. Where there is more than one nominal voltage system each panelboard shall have an engraved phenolic plate describing the means of identification used to identify each phase, neutral, and grounding conductors of the system served by the panelboard per NEC.
 6. Plates shall be white with black lettering.

D. Wall Switches: Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on the wall plate.

E. Receptacles: Install a label on the face of the coverplate and tags or wire markers inside the outlet box identifying the panelboard and circuit number from which the outlet is served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on face of coverplate- black print on clear tape on light colored or stainless steel plates and white print on clear tape on dark colored plates. Embossed tape labels will not be accepted. Use durable wire markers or tags within outlet boxes.

G. Disconnect Switches:
 1. Install an engraved phenolic nameplate on the front of each switch enclosure identifying the equipment served by the safety switch and source of power (i.e., panel name and circuit number).
 2. Plates shall be white with black lettering.
 3. The plates shall be permanently installed with stainless steel screws or stainless steel rivets. Plates installed with glue or other adhesives will not be accepted.
 4. Where motor rated switches are used as service disconnect switches, labeling shall be as described for receptacles.

H. Junction boxes: Identify circuits enclosed in concealed junction boxes on the cover with permanent marking pen.
 1. For power and lighting circuits indicate panelboard of origin and panelboard circuit number(s).
 2. For auxiliary systems circuiting indicate the system and zone served.

I. Service disconnects:
 1. An additional engraved sign shall be permanently attached next to panelboard circuit breakers, on enclosed circuit breaker enclosures, and/or on disconnect switches used as service disconnects to identify each main service disconnect.
 2. The sign shall be red with white lettering a minimum of ½” high.
 3. Where multiple main disconnects are utilized the labels shall identify each as one of a group, i.e., “Service Disconnect 1 of 3”, etc. where there are three service disconnects.

3.26. FIRE ALARM SYSTEM:

A. The installation shall be by a Certified Fire Alarm Contractor who has qualified and received a permit from the State Fire Marshal, with an NICET Level III on staff.

B. All wiring shall be in accordance with the National Electric Code and the local code having jurisdiction.

C. Unless otherwise specified, minimum wire size shall be 14 gauge for AC and power supply connections, 14 gauge for audible alarm and auxiliary circuits, and 18 gauge for signal initiating circuits. Diagrams shall be provided for device and power wiring. Color coding and permanent numbering shall be used as recommended by the equipment supplier.

D. All system wiring shall be installed in metal raceway in accordance with Section "Raceways".
E. Junction boxes shall have covers painted red with the letters “FA” stenciled on the cover in 2” high white letters.

F. Auxiliary Remote Power Supplies/Notification Appliance Circuit Extender (NAC panel):
 1. Power supplies shall be sized at 133% of proposed load. Fire Alarm submittals shall include power supply capacity and loading data.
 2. Remote power supplies shall be supervised by the FACP.
 3. The power supplies shall be installed, accessible, below ceiling, in electrical rooms or where indicated on the drawings.

G. Where air handler shut down is controlled from the fire alarm system, the fire alarm system installer shall provide circuiting as required between the Duct Mounted Smoke Detectors and the HVAC interface/shut down relays. Circuiting connecting the relay output contacts to the HVAC control system shall be provided and installed by the Mechanical/Controls contractor.

H. Each air handling unit shall be a separate fire alarm initiating zone.

I. Install wire guards on all smoke detectors and notification devices installed in gymnasiums or similar use areas.

J. Install UL fire listed cellular communicator for monitoring of the fire alarm system. Provide all material and labor as needed for complete functioning system at the completion of construction.

K. Final connections to the Fire Alarm Control Panel and Voice Panel shall be made by a factory certified, NICET Level III technician.

L. A factory-trained representative of the manufacturer shall supervise connections and final testing of this system and shall complete a Certificate of Completion per NFPA 72. The Certificate of Completion shall be completed and copies delivered to the Owner, Architect, and Engineer prior to the final inspection.

M. On completion of the acceptance tests, the Owner or his representative shall be instructed in the operation and testing of the system.

N. The fire alarm system shall be warranted free from defects in workmanship and materials, under normal use and service, for a period of one year from the date of acceptance or beneficial occupancy, whichever is earlier. Any equipment shown to be defective in workmanship or material shall be repaired, replaced, or adjusted free of charge.

O. Identification and labeling:
 1. Provide a framed building drawing identifying each zone and/or building area.
 2. Each building zone on the Fire Alarm Control panel shall relate to the building drawing in a manner that will direct the fire department to the area of a fire.
 3. On addressable systems each addressable device shall be given a name displayed on the control panel readout that will direct the fire department to the area of the fire, i.e. – South End of Zone(Building) 5; AHU-1 – Mechanical Room 201 – Building 2. Any room number reference shall be to final room numbers assigned to rooms on completion of construction.
 4. Building drawing, schedule of zones, and device identification schedule shall be submitted to the Engineer for approval prior to final inspection and acceptance.
 5. On addressable systems the contactor shall label each device with an alpha-numeric identifier that is unique to that device. This identifier shall correspond to the identifier programmed in the fire alarm control panel such that maintenance personnel may quickly and readily identify the device.

3.27. SECONDARY SURGE ARRESTER:

A. Secondary surge arresters shall be installed in strict accordance with the manufacturer’s recommendations.

B. Arrester may be mounted to the side of a surface mounted panelboard or trough. If such a surface is not available, the arrester shall be mounted on a bracket in its own flush mount enclosure located immediately adjacent to the service panel. Insure that all leads are attached per manufacturer’s recommendations. Excess lead length shall be cut off prior to making connections.
3.28. CONCRETE:
A. The Electrical Contractor shall be responsible for placing concrete for electrical equipment pads, lighting standard bases, electrical equipment supports, and at other locations as indicated on the electrical drawings and/or specified herein.

B. This Contractor shall be responsible for size, location, and orientation of the pads, bases, etc. Any required additions or modifications to concrete due to incorrect size, location, or orientation shall be the responsibility of this contractor.

C. Concrete shall be cured for a period of not less than seven (7) days prior to setting poles, transformers, switchgear, motor control centers, or other pad mounted equipment.

D. Forms shall be completely removed after concrete has cured and prior to setting equipment.

E. A smooth wood float finish shall be given to exposed, unformed concrete.

F. Honeycombed, or otherwise defective areas of concrete shall be repaired by patching with cement mortar.

3.29. SPARE PARTS:
A. Provide one spare set of fuses for each size and type fuse used.

B. For fire alarm systems provide one spare unit of each type initiating and notification device for every 50 devices installed, providing a minimum of one of each type device.

3.30. EQUIPMENT TOUCHUP AND PAINTING:
A. Clean damaged and disturbed areas on all painted surfaces of enclosures, cabinets, and equipment, sand smooth, and apply primer, intermediate, and finish coats of paint to suit the degree of damage at each location. Paint shall be the manufacturer’s supplied touch up paint or a matching paint. Prep all surfaces to be painted by removing all rust, dirt, oil, and any other material that might inhibit good paint adhesion by mechanical means and/or with solvents.

B. Follow paint manufacturer’s written instructions for surface preparation and for timing and application of successive coats.

C. Repair damage to galvanized finishes with two coats of zinc-rich paint recommended by manufacturer.
 1. Paint cut ends.
 2. Paint all drilled and punched holes.
 3. Paint all knicks and scratches.
 4. Paint all field cut conduit threads.

D. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
Division 16

Prepared by Kenneth R. Gunn Jr., P.E.